
npj | computational materials Article
Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-024-01216-7

Machine vision-based detections of
transparent chemical vessels toward the
safe automation of material synthesis

Check for updates

Leslie Ching Ow Tiong 1,2,5, Hyuk Jun Yoo1,3,5, Nayeon Kim1,4, Chansoo Kim1, Kwan-Young Lee3 ,
Sang Soo Han 1 & Donghun Kim 1

Although robot-based automation in chemistry laboratories can accelerate the material development
process, surveillance-free environments may lead to dangerous accidents primarily due to machine
control errors. Object detection techniques can play vital roles in addressing these safety issues;
however, existing detection models still suffer from insufficient accuracy in environments involving
complex andnoisy scenes.With the aimof improving safety in a surveillance-free laboratory, we report
a deep learning (DL)-based object detector, namely, DenseSSD. For the foremost and frequent
problem of detecting positions of transparent chemical vessels, DenseSSD achieved amean average
precision (mAP) over 95% based on a complex dataset involving both empty and solution-filled vials,
greatly exceeding those of conventional detectors; such high precision is critical tominimizing failure-
induced accidents. Additionally, DenseSSD was observed to be generalizable to other laboratory
environments, maintaining its high precisions under the variations of solution colors, camera view
angles, background scenes, experiment hardware and type of chemical vessels. Such robustness of
DenseSSD supports that it can universally be implemented in diverse laboratory settings. This study
conclusively demonstrates the significant utility of DenseSSD in enhancing safety within automated
material synthesis environments. Furthermore, the exceptional detection accuracy of DenseSSD
opens up possibilities for its application in various other fields and scenarios where precise object
detection is paramount.

Automated material synthesis based on robotics and artificial intelligence
has facilitated the material development process1,2. Recent works involved
the synthesis of a wide range of materials, such as organic/polymer
materials3–9, quantum dots10–13, and nanoparticles14. Although automation
can substantially increase developmental efficiency, it is often accompanied
by severe dangers in situations where corrosive or inflammable chemicals
are handled without human surveillance. Any accidents would cause sig-
nificant losses of life and property and result in some causalities in severe
cases. To democratize automation inmaterial synthesis laboratories, safety-
related issues such as machine control errors need to be addressed.

Automated material synthesis for bath processes, especially wet
chemical-based synthesis, inevitably involves frequent movements of

transparent chemical vessels such as flasks15–18, beakers19–21, and vials22,23. If
these vessels are incorrectly placed, any subsequent actions, such as solution
stirring, may lead to undesired dangers. Some features in the robotic arm
such as pressure sensing and control can help reduce the failure cases,
however, do not fully eliminate them because undesired external variations
can possibly occur unexpectedly. In this regard, detecting themovements of
transparent chemical vessels is considered an important task for improving
safety in automated chemical synthesis, and deep learning (DL)-based
computer vision can play a vital role here. Computer vision has been widely
used in object segmentation and detection24–28 in industries such as auton-
omous vehicles29,30, disease diagnosis31, and rehabilitation32.However, object
detectors for automated material synthesis systems have yet to be reported,

1Computational Science Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. 2Mechatronics Research, Samsung
Electronics Co., Ltd., Hwaseong-si 18448, Republic of Korea. 3Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of
Korea. 4Department of Chemistry, Korea University, Seoul 02841, Republic of Korea. 5These authors contributed equally: Leslie Ching Ow Tiong, Hyuk Jun Yoo.

e-mail: kylee@korea.ac.kr; sangsoo@kist.re.kr; donghun@kist.re.kr

npj Computational Materials |           (2024) 10:42 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01216-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01216-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01216-7&domain=pdf
http://orcid.org/0000-0003-3786-2117
http://orcid.org/0000-0003-3786-2117
http://orcid.org/0000-0003-3786-2117
http://orcid.org/0000-0003-3786-2117
http://orcid.org/0000-0003-3786-2117
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
mailto:kylee@korea.ac.kr
mailto:sangsoo@kist.re.kr
mailto:donghun@kist.re.kr


and we aim to develop a high-performance detector that is suitable for
identifying the error positions of transparent chemical vessels for safety
purposes in the present study.

Generally, object detection is described as a collection of related
computer vision tasks that involve identifying objects in the given image.
Currently,models such asYouOnlyLookOnce (YOLO)and the single-shot
detector (SSD) are the most popular DL-based object detectors introduced
byRedmonet al.33,34. andLiu et al.35, respectively. Thesemodels performwell
regarding the speed of detection in real-life scenarios. However, one of the
challenges is that neither YOLO nor the SSD can achieve sufficiently high
detection accuracy in complex scenes with noisy background images.
Recently, DEtection TRansformer (DETR) was introduced by Carion
et al.36, which utilized transformer-based structure to overcome these issues.
In addition, these models also rarely focus on complex objects indepen-
dently due to the lack of aggregating and exploring the information between
the network layers. These limitations of YOLO, SSD, and DETR make it
difficult to directly implement them in surveillance-free chemistry labora-
tories where very high detection precisions are required for safety purposes;
this calls for the development of an improved detection model.

To achieve superior detection accuracy in an automated chemical
synthesis laboratory, we report an object detector, namely, a densely con-
nected single-shot detector (DenseSSD) with a densely connected
mechanism35. The advantage of this model is that we proposed a densely
connected pyramidal layer in the model structure so that it can be more

robust when learning feature representations, and it achieved improved
object detection performance over that of benchmark models including
DETR, YOLOv3, YOLOv6, and SSD. Owing to these benefits, DenseSSD
achieved 95.2% mean average precision37 (mAP) on a complex dataset
involving both empty and solution-filled vials, greatly exceeding the values
produced by DETR, YOLOv3, YOLOv6, and SSD by 11.3%, 53.4%, 10.5%,
and 18.9%, respectively. In addition, DenseSSD was found to be compara-
tively insensitive to the environmental changes, maintaining the highest
precision under the variations of solution colors or testing view angles. Such
robustness ofDenseSSDallows the equipment settings tobemoreflexible in
laboratory environments. Last, to fully realize the potential ofDenseSSD,we
designed the safety alert module to remotely and immediately notify
researchers of possible dangerswhen any failures are detectedbyDenseSSD.
Overall, DenseSSD demonstrates the potential for effective extension to
various detection tasks where high detection accuracy is essential.

Results and Discussion
Workflow and model description
The overall workflow of vial positioning detection based onmachine vision
is schematized in Fig. 1a. The hardware consists of a vial storage box, a robot
arm, multiple vial holders on the stirrer, and a camera taking a bird’s-eye
view of all these pieces of equipment and their related actions. Images of
these hardware systems are provided in Supplementary Fig. 1. The robot
arm is programmed to repeatedly attempt to move the vials in the storage

Fig. 1 | Workflow and model structure.
aWorkflow of the vial positioning detection
system based on DenseSSD. An action is defined
as the movement of the robot arm to relocate
each vial to its holder. Green and red boxes
represent the predicted bounding boxes for the
success and failure cases, respectively. When a
failure vial positioning case is detected by
DenseSSD, an alert is remotely and immediately
sent to the responsible researcher. bThenetwork
architectures of DenseSSD, which largely
consists of mainstream structure and pyramidal
feature cascading structure. The conv 3 × 3 and
conv 1×1 refer to convolution layers with filter
sizes 3 × 3 and 1 × 1, respectively. The avgpool
layermeans an average pooling layer with its size
2×2. Each transition layer is composed of conv
1×1 and avgpool, while each reduction layer has
the reversed order composition of avgpool and
conv 1×1. More detailed layer information can
be found in Supplementary Table 1.
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box right into the vial holders on the stirrer. In automated synthesis
environments where researcher surveillance is absent, vial movement
attempts may fail, possibly due to robot malfunctioning, programming
errors, and any external environmental changes. Even if they may occur
with a very low probability, such errors may cause dangerous situations in
synthesis laboratory environments; any subsequent actions must be
immediately halted. In other words, when the machine vision process
detects a failure case in the vialmovement actions, the system instantly stops
and is designed to remotely send an alert to responsible researchers.
Otherwise, the system continues to perform the following action of moving
the remaining vials. Supplementary Video 1 demonstrates the overall
workflow of our system including hardware movements, object detection
steps, and alert modules.

We propose an object detection model, namely, DenseSSD. The ori-
ginal SSD model was introduced by Liu et al.35 for object detection and
recognition, and the concept of a densely connected network38 is incorpo-
rated in DenseSSD to extract comparatively richer feature representations
for achieving enhanced vial positioning detection performance. In this
study, we demonstrate that DenseSSD outperforms the benchmarkmodels,
including YOLOv3, DETR, SSD, and YOLOv6 models, for the task of vial
positioning detection. YOLOv3 and SSD are conventional object detection
models. The YOLOv3 model was the first attempt at building a DL-based
object detector, and it was proposed by Redmon et al.34 As illustrated in
Supplementary Fig. 2, the YOLOv3model utilizes DarkNet39 as a backbone
structure by adding four convolutional (conv) layers to explore the features
of the entire input image and predict each bounding box candidate. This
means that the model globally explores the full image and all the objects in
the image without performing the region proposal step. However, the
limitation is that such a model lacks the ability to recognize irregularly
shaped objects or groups of small objects due to its lack of exploring the
global and local features of the image.Toovercome this limitation, Liu et al.35

proposed SSD by using pyramidal feature representation layers to explore
and correlate the global and local features for efficiently detecting objects.
Here, the global features describe the entire imagewith general information,
such as shape information, and the local features describe the image patches
with specific details, such as texture information. SSDmodelwas inspired by
theVisualGeometryGroup (VGG)40model,whichwas designed as the base
model for extracting useful image features. Specifically, as shown in Sup-
plementary Fig. 2, SSD adds several feature layers with decreasing sizes;
these layers are defined as pyramidal representations of images at different
scales.

Recently, Li et al.41 proposed the newest version YOLOmodel, namely
YOLOv6, to leverage the pyramidal network for extracting global and local
features information, as illustrated in Supplementary Fig. 2. Such a pyr-
amidal structure performs better thanYOLOv3 and SSD in capturing global
and local features from the different scales of the representation layers to
target objects of various sizes. However, this model hardly focuses on
complex objects independently due to the lack of aggregating and exploring
the information between the subsequent layers.

More specifically in termsof object type,many computer visionmodels
have been developed to deal with transparent object, such as 3D shape
estimation42, segmentation43–45, and detection46. For example, ClearGrasp42

was designed for 3D shape estimation and transparent object grasp. This
model requires a difficult input of depth channel from RGB-D sensor to
perform the 3D shape reconstruction, which causes a longer (a few seconds)
decisionmaking process. This featuremay significantly limit the usability of
thismodel in automatedchemical labswhere the superfast detection speed is
critical. Besides ClearGrasp, some segmentation models for transparent
objects were also reported, including Trans2Seg43, TransMatting44,
Trans4Trans45; however, these models were developed for segmentation
purposes, rather than detection purposes, thus being unsuitable as com-
parativemodels in our study. Instead,we consider adopting the state-of-the-
art transformer-based object detectors such as DETR36 and TTG-Net46 as
reference models, which were used for detecting both transparent and
opaque objects.

Considering the limitations of previous models above, we introduce a
densely connected mechanism in the pyramidal cascading structure to
explore and aggregate the correlations of relevant features among the sub-
sequent layers in SSDmodel, namely, DenseSSD. The network architecture
ofDenseSSD is illustrated in Fig. 1b.DenseSSDutilizes thedesign concept of
a densely connectedmechanism38, in which all layers are densely connected
to extract comparatively global and local feature representations; in contrast,
in the original YOLOv3, SSD, YOLOv6, andDETRmodels (Supplementary
Fig. 2), the features in each conv layer are used as inputs for the next layer
without communication. DenseSSD contains two components: a main-
streamnetworkandapyramidal feature structure.Themainstreamnetwork
consists of four dense block (DB) layers and four transition layers. The DB
layers use different connectivity patterns by introducing direct connections
from any layer to all subsequent layers, which improves the information
flow between layers. Each layer has access to all the preceding feature maps
(FMs) in its blocks and thus to the network’s collective knowledge. Next, the
densely connected mechanism is additionally deployed in the pyramidal
feature structure to extract the multiscale FMs from different layers. The
structure consists of six feature block (FB) layers as pyramidal layers andfive
reduction layers. The FB layers are devised to aggregate themultiple features
derived fromdifferent regions and progressively explore the global and local
features at each pyramidal layer. The reduction layer consists of an average
pooling layer (avgpool) and conv 1 × 1 layer to remain the depth of FB
representations. Owing to the densely connected FB layers, DenseSSD is
expected to collect rich information while maintaining low feature com-
plexity. The details of the network configurations are provided in Supple-
mentary Table 1.

Object detection performance
To perform the training, a large-scaled data is created in this study. Our
dataset only focused on standard type of vialwith 20ml,which is commonly
used. The dataset was collected in the real scene of our automated material
synthesis environments, which contains 10 short recorded videos. During
recording,we set the camera viewwith45°, as this viewangle can easily cover
the entire environments.A total of 789 images are extracted from the videos.
Each image contained several vials, which were manually labeled as either
success or failure cases, as described in Fig. 2a and Supplementary Fig. 3.
Note that success cases referred to vials correctly located in their holder,
whereas failure cases referred to vials in any undesired places, namely, those
in fall-out, lie-down, lean-in, and stand-on situations. These four types of
failure modes were chosen based on appearances in the real use cases
experiments, as shown in SupplementaryVideo 2. Since collecting the scene
for different environment conditions is difficult, data augmentations
methods, including random flipping, brightness, saturation, hue, and
Gaussian filter, were applied only to the images in the learning dataset to
overcome the imbalanced environmental factors (Supplementary Fig. 4).
Wedivide thedatasetwith the ratio 60:40 as learning (including training and
validation) and testing set. Note that no images for learning set overlapped
with the testing set. As a result, for the detector performance evaluations,
8,764 vial cases were used for learning, and 1,502 cases were used for testing.
The details about the dataset construction process are provided in Supple-
mentary Tables 2 and 3.

DL experiments based on the image datasets were carried out to
compare the vial positioningdetectionperformancebetweenDenseSSDand
other benchmark models (DETR36, YOLOv333, SSD35 and YOLOv641). To
assess the performance of these object detection algorithms, we followed the
standard procedure and utilized average precision (AP) and mean average
precision (mAP)as evaluationmetrics37,47,48. AP andmAParewidely used in
object detection tasks as they provide a comprehensive measure of the
algorithms’ precision and recall in detecting objects. In Fig. 2b, DenseSSD
achievedAPsof 99.9%and90.5% for each success and failure class andmAP
of 95.2%, greatly exceeding themAPs of theYOLOv6 (86.6%), SSD (82.1%),
DETR (83.9%), and YOLOv3 (61.4%). For the details, the mAP values of
YOLOv3, YOLOv6, SSD, DETR, and DenseSSD are provided in Supple-
mentary Table 4. In particular, DenseSSD outperformed the original SSD,
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DETR, and YOLOv6 by 16.0—16.9% for failure cases, and such high
detection precision for failure cases is required to minimize failure-induced
accidents. Supplementary Video 3 describes a specific example where a
scene involving eight vials was used to test three models, including Den-
seSSD. We observed that DenseSSD performed perfectly, while some
detections provided by YOLOv3, SSD, DETR, and YOLOv6 were mis-
leading. For the YOLOv6 and DETR, multiple bounding boxes with failure
labels were made for a stand-on and lie-down vial. Several errors in SSD
model were that two bounding boxes with different labels were made for a
stand-on vial. InYOLOv3,many error typeswere found as follows: (1) some
vials were missed in the detection results, (2) failure cases were incorrectly
classified as success cases, and (3) the bounding boxes were poorly made
(small IoU value). In addition to the detection accuracy, the computational
and memory efficiency levels of these models are compared in Fig. 2b.
DenseSSDwas superior to theYOLOv6, SSD,DETR, andYOLOv3 in terms
of both space complexity (total parameters) and time complexity (FLOPS:
floating-point operations per second). The numbers of total parameters and
FLOPS were 7.9M and 19.2M, respectively, which were significantly
smaller than those of YOLOv6 (parameter size = 17.9M, FLOPS = 44.2M),
SSD (parameter size = 23.9M, FLOPS= 22.5M), DETR (parameter size =
41.0 M, FLOPS = 86.0 M), and YOLOv3 (parameter size = 320.6M,
FLOPS = 24.3M). In DenseSSD, the complexity is substantially relieved by
optimizing the parameters and simplifying the connectivity between layers

because it is unnecessary to learn redundant FMs. These comparisons
indicated that the object detection process is extremely fast and efficient in
our DenseSSD model.

To analyze the stability of themodels, precision-recall (PR) curveswere
obtained, as shown in Fig. 2c. The analysis was performed bymeasuring the
area under the curve (AUC)49. For reference, stability is a crucial factor that
increases safety by reducing the false alarm probability, which refers to
incorrectly identifying a failure case as a success case. As seen in Fig. 2c,
DenseSSD effectivelymaintained its performancewhen applied to real-time
vial positioning detection by achieving 0.97 as its AUC value; however,
YOLOv6, SSD,DETR, andYOLOv3 only achieved 0.75, 0.74, 0.71, and 0.49
as theirAUCvalues, respectively. Thismeans thatDenseSSDmaintained its
AP with less degradation than other models and accurately predicted
bounding boxes for detections. Through this analysis, we conclude that
DenseSSD exhibited significantly higher stability in detecting failure cases
than the benchmark models and thereby can minimize false alarm
probability.

Some detection examples are provided in Fig. 2d and Supplementary
Fig. 5,wheremost of the failure cases were accurately detected byDenseSSD
without false alarm issues, in contrast, YOLOv3, DETR, SSD, and YOLOv6
did not perform well. As can be seen in Fig. 2d and Supplementary Fig. 5a-
5c, we noticed that vials positioned between vial holders were difficult to
capturewithYOLOv3,DETR, SSD, andYOLOv6due to their transparency,

Fig. 2 | Comparisons of vial positioning
detection performance. aDefinitions and types
of success and failure cases. Failure vial
positioning involves four statuses of fall-out,
lie-down, lean-in, and stand-on. b Detection
performance of the DenseSSD, YOLOv6, SSD,
DETR, and YOLOv3 models. AP, FLOPS, and
total number of parameters of threemodels were
compared. For AP evaluation, the threshold of
0.5 for the intersection over union (IoU) was
used. c PR curves of the YOLOv3, DETR, SSD,
YOLOv6 and DenseSSD models. d Exemplary
detection results of YOLOv3, DETR, SSD,
YOLOv6 and DenseSSD, achieved for two
scenes. One scene contains eight vials including
six success cases and two failure cases with the
fall-out and lie-down statuses, while the other
one contains four vials including two success
cases and two failure cases with the lean-in and
stand-on statuses. The failure vial cases are
highlighted in yellow dotted lines for clarity.
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but they were successfully detected by DenseSSD. This indicates that
DenseSSD is advantageous in differentiating the transparent objects exhi-
biting lowbrightness from thenoisybackground. In addition,we alsofind in
Fig. 2d andSupplementaryFig. 5, that vials positionedonvial holders (either
lean-inor stand-on failure cases)were erroneously detected by SSDwith two
bounding boxes made for each object; the phenomenon was fixed with
DenseSSD. YOLOv6 and DETR also suffered the errors by capturing
additional bounding boxes on overlapped positions between failure cases.
We speculate that these benefits were likely derived fromdensely connected
mechanism and pyramidal feature cascading structure in DenseSSD, which
could explore and correlate the global and local features for object detections
regardless of low brightness and noisy background.

To further understand the reasons why DenseSSD outperformed the
other methods, we visualize the FMs of the three models in Fig. 3 and
Supplementary Fig. 6. The FMs were captured in the FBs of the DenseSSD
model, the attention layer of DETR, and the conv layers of YOLOv3, SSD
and YOLOv6 models (Fig. 1b and Supplementary Fig. 2), and they look
substantially different. For DenseSSD, the FMs focus on the localized
regions of vials, and in particular, FM2 of DenseSSD successfully distin-
guishes two failure cases from the remaining success cases. For the DETR,
the attention layer can capture the feature consistently; however, the
mechanism is still sensitive to backgroundnoise and tiny-size appearance of
vial. In contrast, the FMs of SSD and YOLOv6 are obviously less clear, and
those ofYOLOv3are irregular andnoisy,which is consistentwith thehigher
performance of our DenseSSD model. These comparisons indicate that
DenseSSD built clearer and richer FM representations that enhanced the
pyramidal feature cascading structure to differentiate between the multiple
vial positions. This is likely because unlike the competing approaches,
DenseSSD receives direct supervision and reuses the feature patterns from
the previous layers in its FBs, which share collective knowledge to improve
the detection performance of the overall method.

Application involving solution-filled vial datasets
Since vials are often filled with solutions in chemistry laboratories50–53, the
study needed to be expanded to datasets involving solution-filled vials. The
positioning failures of solution-filled vials would be more dangerous than
those of empty vials because the liquids in these vials may pour out and
jeopardize neighboring equipment. Therefore, we performed object detec-
tion experiments by constructing more complex datasets involving both
empty and solution-filled vials. Figure 4a describes the composition of the
training dataset used for the detection experiments. While the empty vial
dataset was the same as the one used in the experiments in Fig. 2, we
additionally collected359 images for thedataset of solution-filledvials.Here,
the colors of the filled solutions were randomly designed to make the
detectorsmore robust to color changes. The vials in each imagewere labeled
as either success or failure cases. The data augmentation procedures were

also applied to the images in the learning dataset, as described in Fig. 4b and
Supplementary Fig. 7. As a result, a total of 17,174 vial cases were used for
detector training, and 2,282 cases were used for testing. More details about
the dataset construction process are provided in Supplementary Tables 2
and 3.

We first measured the precisions achieved when the models were
trained only with the empty vial dataset, as shown in the upper panel of
Fig. 4c. DenseSSD, YOLOv6, SSD, DETR, and YOLOv3 achieved mAPs of
only 81.2%, 80.2%, 75.5%, 72.5%, 30.0% respectively, indicating that the
empty vial dataset is not sufficient on its own for detecting the positions of
solution-filled vials. In particular, DenseSSD only achieved a 67.5% AP for
the failure cases, which is far from the satisfactory level. Next, we measured
the precisions achieved when the models were trained with the full datasets
containingboth empty andfilled vials. ThemAPvalueofDenseSSDreached
95.2%, greatly exceeding 84.7%, 76.3%, 84.5%, and 41.8% of YOLOv6, SSD,
DETR, and YOLOv3. Very interestingly, the precision of failure cases was
enhanced dramatically forDenseSSD,whereas itwas limitedly improved for
SSD, DETR, and YOLOv6. The AP of DenseSSD for the failure cases was
improved to 90.8%, which was significantly higher than those of SSD,
DETR, and YOLOv6. Those high precision for the failure cases is critical to
minimizing failure-induced accidents. ThemAP values of YOLOv3,DETR,
SSD, and YOLOv6 are provided in Supplementary Table 5. The detection
results obtained in the example scenes (Fig. 4d) reveal the specific incorrect
detection cases. For example, some solution-filled vials with the stand-on,
lean-in status, and even success cases were missed in YOLOv3 and SSD
detections. Also, DETR, SSD, and YOLOv6 show the frequent problems of
double bounding boxes with different labels for a single object, causing
misleading detection results. Overall, DenseSSDwas demonstrated to be the
most effective vial positioning detection method for both empty and
solution-filled vials, greatly outperforming the existing models.

Testing view angle sensitivity
For wide utilization of DenseSSD in diverse lab environments, the discus-
sion of camera setting is needed to get consistent detection performance
globally. One of the important things in camera setting is view angle var-
iations. In Figs. 2 and 4, overlapped objects between transparent vials
sometimes occur, and induce detection confusion of model. Indeed,
degradation of detectionperformance fromoverlapped objects is affected by
sensitivity of camera angles. Therefore, we modified the datasets by adding
images taken from different angles to evaluate the robustness of DenseSSD
to camera angle variations. Several viewangles of investigation included 30°,
45°, 60°, and 90°, as illustrated in Fig. 5a. The modified dataset included
2,377 original images across different angles. The data augmentation pro-
cesses, such as image flipping, brightness, hue, and Gaussian blurring
augmentation, were applied only to the images in the learning set (Sup-
plementary Fig. 4). As a result, for the detector performance evaluations,

Fig. 3 | Visualization of the FM representations. The ground-truth scene contains
eight vials including six success cases and two failure cases with the fall-out status.
The failure vial cases are highlighted in yellow dotted lines for clarity. The detection

results and four FMs yielded by YOLOv3, DETR, SSD, YOLOv6, and DenseSSD are
compared.
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32,715 vial cases were used for learning, and 3,648 cases were used for
testing. More details about the dataset construction process are provided in
Supplementary Tables 2 and 3.

Transfer learning was performed by using the pretrained weights
from the datasetwith only 45° angles. In Fig. 5b, we observe thatDenseSSD
achieved the best mAPs on the testing datasets corresponding to different
angles compared to those of SSD, DETR, YOLOv6 and YOLOv3: 88.5%
(30°), 94.8% (45°), 93.8% (60°), and 84.9% (90°). The mAP values of SSD,
DETR, YOLOv6 and YOLOv3 are provided in Supplementary Table 6.
Considerable mAP reductions at 30° and 90° was observed for all models.
DenseSSD maintained its high mAP (over 93%) between 45° and 60°,
indicating that its performance is highly insensitive to the testing view
angle, and thus the model is robust to angle variations. Unlike that of
DenseSSD, the mAPs of the other methods, including YOLOv3 and SSD,
hit their highest values at only 45° and noticeably dropped at both 30° and

60°; these techniques are comparatively sensitive to the provided view
angles. Interestingly,DETR is performedwell consistently for all the angles
within themAP range of 82–84%.Overall, this test revealed thatDenseSSD
is robust to environmental changes. This insensitivity of DenseSSD is
beneficial in a chemical laboratory because it allows the utilized equipment
settings to be more flexible. The detection precisions achieved by Den-
seSSD with angle variations can further be understood with specific
examples in Fig. 5b and c, involving two failure vial positioning cases with
the lean-in and stand-on statuses. At 30°, two vials appeared to overlap,
making the differentiation of these two objects highly difficult; as a result,
the lean-in vial was incorrectly detected as the success case. Similarly, at 90°
angle, the lean-in vial was detected as success, likely due to the very similar
appearances of these two types of vials from the top view. Testing view
angles between 45° and 60° could prevent these limitations and led to
enhancedmAPs exceeding 93.8%. In terms of camera settings, testing view

Fig. 4 | Application of DenseSSD to solution-filled vial datasets. a Compositions
of the training datasets used for the detection experiments. The number refers to the
number of images in the training dataset. b The appearances of empty vials and
solution-filled vials. Image processing techniques based on hue and saturations were
applied to the images involving solution-filled vials for data augmentations.
c Detection performance (AP) comparisons between YOLOv3, DETR, SSD,
YOLOv6, and DenseSSD under different training set construction procedures: one
that conducts training with only the empty vial dataset and another that conducts

training with the dataset containing both empty and filled vials. d Exemplary
detection results with other benchmark models and DenseSSD, achieved for two
scenes involvingmultiple solution-filled vials. One scene (Case 1) contains four vials
including one success cases and three failure cases with the lean-in and stand-on
statuses, while the other one (Case 2) contains seven vials including four success
cases and three failure cases with the stand-on and lean-in statuses. The failure vial
cases are highlighted in yellow dotted lines for clarity.
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angles between 45° and 60° prevent performance degradation from
transparent overlapped objects.

Generalizability to other laboratory environments
To expand the impact of our proposed model, we conducted further deep
learning experiments to assess its generalizability in various laboratory
environmental settings. The primary objective of these experiments was to
enhance the performance of the DenseSSD, YOLOv6, and DETR models
specifically for the environmental settings. However, it is important to note
that the generalization capability of the model heavily relies on the quality
and diversity of the datasets used for training54. The concept of quality and
diversity in our study encompassed different aspects of the laboratory
environment, including camera views, indoor locations, experiment desks,
illumination conditions, and hardware variations (such as different stirring
machines). To ensure robust performance and adaptability, we focused on
expanding the training datasets to include a wide range of scenarios that
cover both success and failure cases in unconstrained environments. By
doing so, we not only aim to improvemodel performance, but also enhance
generalization, capture variability, and effectively address rare events.

In terms of training protocols, we used existing datasets along with a
more diverse and generalized dataset.We carefully rearranged and collected
a comprehensive training dataset that encompasses various types of stirring
machines. We categorized the stirring machines into three types based on
the allocated object distance between the vials: “sparse”, “semi-sparse”, and
“dense”, which are illustrated in Fig. 6a. The “sparse” type refers to con-
figurations where there is a significant distance between individual vials,
resulting in fewer vials within the machine. On the other hand, the “dense”
type represents configurationswith closelypackedvials, resulting in ahigher
density of vials within themachine. The “semi-sparse” type falls in between,

with amoderate level of vial spacing and density. These categories provide a
systematic way to account for variations in vial arrangements and help the
models learn and adapt to different levels of vial density in real-world
scenarios. Additionally, we considered the coverage of different environ-
mental settings and illumination conditions, encompassing both bright and
dark environments in the external laboratories. In terms of camera view,
illumination conditions frombackgrounds affect confusion of camera focus
which degrade clarity of transparent objects. For visual confirmation and
further details, please refer to Fig. 6b, which provides a comprehensive
overview of the experimental setups. This approach allowed us to capture
different configurations and variations in the positioning of the vial holders,
enabling the models to learn and adapt to a wider range of real-world
scenarios. Conversely, for the testing protocols, we also collected additional
datasets that encompassed different environmental settings (particularly
featured by vial holders self-designed by 3D printers in Fig. 7b), enabling us
to evaluate the model’s performance in previously unseen environments.

The comparison results for the experimental settings are presented in
Fig. 7a and Supplementary Table 7. A total of 594 scenes from the different
experimental settings was used as the test set, including different types of
stirring machines accommodating 1 vial (“sparse” type), 9 vials (“semi-
sparse” type), and 25 vials (“dense” type), respectively. As shown in Fig. 7a
and Supplementary Table 8, our DenseSSD model (without fine-tuning)
consistently achieved the highest mAP values across all the test scenarios.
Importantly note that DenseSSD and other comparative models applied in
these testing experiments are not fine-tuned by transfer learning. Specifi-
cally, for the “sparse” type of stirringmachine,DenseSSDachieved amAPof
84.9% and 90.4% in bright and dark environments, respectively. When it
came to the “semi-sparse” type of stirring machine, DenseSSD achieved a
mAP of 75.1% in the bright environment and 90.1% in the dark
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Fig. 5 | Testing view angle sensitivity. a A scheme illustrating four camera angles
(30°, 45°, 60°, and 90°). The origin for anglemeasurement is the center position of the
stirrer. b Vial positioning detection performance (mAP) as a function of the testing
view angle. cA scheme illustrating a ground-truth image involving two failure cases,
one each with the lean-in and stand-on statuses. d The scenes and their

corresponding detection results with DenseSSD for each tested camera angle. The
failure vial cases are highlighted in yellow dotted lines for clarity. At 45° and 60°, both
failure cases were correctly detected. At 30° and 90°, the vial in the lean-in status was
incorrectly predicted as the success case.
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environment. Additionally, for the “dense” type of stirring machine, Den-
seSSD achieved mAP values of 62.8% and 79.9% in the bright and dark
environments, respectively. The comparative models, including DETR and
YOLOv6, achieved mAP values of less than 79% for the “sparse” type, less
than 70% for the “semi-sparse” type, and less than 49% for the “dense” type,
respectively. To sum up detection results, DenseSSD substantially outper-
forms YOLOv6 and DETR in all tested cases. Interestingly, DenseSSD
shows consistently high performances in dark environment due to clarity of
transparent objects. As can be seen in Fig. 7b and Supplementary Figs. 8–10,
the lightness of transparent objects in “dark” backgrounds is higher than
“bright” backgrounds, so that DenseSSD can find it easier to locate trans-
parent objects and classify success vs. failure cases, leading to the much
enhanced detection precisions of DenseSSD over YOLOv6 and DETR. In
Supplementary Figs. 8–10, the comparisons of real detection scenes visually
illustrate the exceptional performance of our DenseSSDmodel, showcasing
its remarkable ability to accurately detect and precisely localize vials in
various experimental configurations.

The results shed light on the significant impact that the DenseSSD
model can have in preventing failures within automated laboratory systems.
Through rigorous testing and evaluation, we demonstrated that the Den-
seSSDmodel achieved exceptional performance in accurately detecting and
localizing vials across various laboratory setups. Notably, the advanced
pyramidal feature cascading structure employed within DenseSSD played a
pivotal role in generating clearer and more detailed feature maps, empow-
ering the model to effectively discern between multiple vial positions in the
unconstrained environments. These findings not only highlight the tangible
benefits of implementing algorithms such as DenseSSD in laboratory
automation environments for chemical experiments but also provide
valuable insights for generalizing its effectiveness to other environments.

Although we have confirmed thus far that our DenseSSD model per-
forms excellently in terms of vial positioning detections, the benefits of this
work couldpossibly be reduced inflexible automation systems.Recently, the
community for lab automation is shifting away from hard-coded manip-
ulation path towardmore flexible automations. In this work, themovement
of robotic arm are hard-coded and the background scene remains same. On
the other hand, in the flexible automation systems, the hardware move-
ments and background scenes could unexpectedly be variant, where the
training of machine learning models could be much more difficult. How-
ever, our results provide insights into the generalizability of DenseSSD to
other laboratory environments that involve complex hardware settings or

different chemical vessels. We showcase exemplary detection scenes,
including cuvette positioning, in Supplementary Fig. 11, comparing the
detection results of DenseSSD with those of YOLOv6 and DETR. These
results support the notion that with appropriate transfer learning techni-
ques, our DenseSSD model can be extended to handle not only complex
hardware settings, but also various types of chemical vessels in diverse
laboratory environments.

Last, to fully realize its potential in surveillance-free chemistry
laboratory environments, we additionally introduced a safety alert module
that was designed to remotely notify researchers of possible dangers
immediately after failure cases are detected by DenseSSD. Supplementary
Fig. 12 shows the scheme of the alert module. Upon the detection of failure
cases, any hardware system operations are immediately halted, and the alert
module remotely sends the scene image and related text such as the event
time and problematic vial’s information to the user’s messenger based on
TCP/IPnetwork communications. Such an alertmodule is an indispensable
component of an automated laboratory environment because it is critical to
minimizing failure-related losses. Supplementary Fig. 13 describes our alert
module, which was tested with several popular messengers around the
globe, including Facebook Messenger and Telegram.

In summary, we developed a DL-based object detector, namely,
DenseSSD, which was demonstrated to accurately detecting chemical vials’
positions in chemistry laboratory environments. Recently, the automation
of chemical synthesis has garnered much attention mainly due to its
potential to significantly increasematerial development efficiency; however,
safety issues have rarely been addressed today. In the present study, Den-
seSSD significantly outperformed the previous detectors of YOLOv3,
DETR, SSD, and YOLOv6 exhibiting detection precisions over 95% for the
complex datasets involving both empty and solution-filled vials. The
enhanced precision will no doubt contribute to minimizing the possible
losses of life and property in surveillance-free laboratory environments.
Also, DenseSSD is found to be robust to environmental changes. It main-
tains the high precisions under the variations of solution colors, testing view
angles, background scene, and types of experiment hardware and chemical
vessels, which supports the generalizability of DenseSSD in diverse
laboratory environments. Furthermore, since DenseSSDmodel is a general
object detector, we expect this will not be limited to chemistry-relevant
datasets; thus, it will be useful for other detection tasks, such as self-driving
vehicles, medical imaging, and remote sensors, where high detection
accuracy is of utmost importance.

Fig. 6 | The designation of training dataset in
unconstrained environments. a Definition of
three types of stirring machine based on the
allocated object distance between the vials:
“sparse”, “semi-sparse”, and “dense”; the
coverage of different environmental settings and
illumination conditions, encompassing both
bright and dark environments in the chemistry
laboratories. bVisualization on several examples
of training dataset in the unconstrained
environments.

https://doi.org/10.1038/s41524-024-01216-7 Article

npj Computational Materials |           (2024) 10:42 8



Methods
Hardware
The hardware systems consisted of a vial storage box, a robot arm, and eight
vial holders on a stirrer, as described in Supplementary Fig. 1. A camerawas
also set up for monitoring the equipment and their interactions. The vial
storage box was prepared to supply vials, and the robot arm was pro-
grammed to relocate the vials in the box to the holders on the stirrer.

Object detection models
Regarding the configuration ofDenseSSD, themodel contains five FB layers
and five reduction layers, as shown in Fig. 1b. Let an FB be a FMblockwith l
layers of H that are composed of DBs and rectified linear unit layers:

FB ¼ Hl b0; bl�1

� �� � ð1Þ

where b0 and bl−1 represent the transition and DB layers, respectively. The
operator [·] is defined as a concatenation operator. Then, a reduction layer is
implemented in the early stage of the FB and performs an average pooling
operationanda1×1 conv layer to aggregate theFMrepresentationswith the
samedimensionality.Here, the 1× 1 conv states that thefilter sizeof the conv
layer is 1 × 1. All the configurations are listed in Supplementary Table 1. To

achieve the training objective, we define a total loss34 (Ltotal) function as a
weighted sumof the localization (Lloc) loss and the confidence loss (Lconf) as
follows:

Ltotal x; c; l; g
� � ¼ 1

N
Lconf x; cð Þ þ αLloc x; l; g

� �� � ð2Þ

where x, c, l, and g are defined as the input image, multiclass confidence
scores, predicted box, and ground-truth box, respectively.N is defined as the
numberofmatchedboxes, andα is theweight for the localization loss. In this
work, α is set as 0.5. Specifically, Lloc is presented as follows:

Lloc x; l; g
� � ¼

XN

i2Pos

X

m

xkijsmoothL1 lmi � gmj

� �
ð3Þ

where smoothL1(·) is defined as the smooth L1 loss55 to calculate the loca-
lization loss between the predicted boxes (l) ofm and the ground-truth (g)
boxes ofm. Here,m∈ {cx, cy, w, h}, where cx and cy are defined as the center
of the default bounding box;w and h are defined as the width and height of
the bounding box, respectively. In addition, xkij is an indicator for matching
the ith predicted box to the jth ground-truth box of category k. Next, Lconf is

Fig. 7 | Generalizability of DenseSSD to other environmental settings.
a Comparisons of detection performance on between DenseSSD, YOLOv6 and
DETR models with different types of stirring machine and different environments.

b Exemplary detection scenes on DenseSSD model with different types of stirring
machine and environments. More exemplary detection scenes are provided in
Supplementary Figs. 8–10.
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the softmax loss over multiple classes of confidence I:

Lconf x; cð Þ ¼ �
XN

i2Pos
xkij log ĉpi

� ��
XN

i2Neg
log c0i

� �
ð4Þ

ĉpi ¼
exp cpi

� �

P
p exp cpi

� � ð5Þ

where ĉpi is known as the softmax loss function; p is defined as a predicted
boxwith a specific class, and 0 refers to a predicted box as a negative sample
or background information.

During the training process, we applied the stochastic gradient descent
(SGD) optimizer56 with a learning rate of 1.0 × 10−3, a weight decay of
1.0 × 10−8 and a momentum of 0.9. In our experiments, the batch size was
set to 64, and the training procedure was carried out for 100 epochs.
Trainingwas conducted on our dataset andwas performed by following the
protocols that were mentioned in the “Model structure and performance
comparison” section. We also randomly divided the images in the training
set for cross-validation purposes by taking 20% of the images as the vali-
dation set and the remaining images as the training set. Note that themodel
was trained using an Nvidia Tesla V100 GPU.

For YOLOv3, SSD, DETR, and YOLOv6, we utilized all the existing
models that were provided by their respective authors. We therefore made
our best effort tomodify the networks from the existingmodels by following
DETR36, YOLOv334, SSD35 and YOLOv641 to perform fine-tuning by con-
ducting training with our dataset, as mentioned earlier. We also applied the
SGDoptimizerwith a learning rate of 1.0 × 10−3, aweight decay of 1.0 × 10−8

and a momentum of 0.9. In these experiments, the batch size was set to 64,
and the training process was carried out for 100 epochs. The models were
trained using an Nvidia Tesla V100 GPU.

Evaluation metrics for object detection
AP is a popular metric for measuring the accuracy of object detection
models. The calculation of AP involves only one class. The metric can be
calculated using the following equation:

AP ¼
Xn�1

i¼1

riþ1 � ri
� �

pre riþ1

� � ð6Þ

where r1, r2, …, rn are the recall levels at which the precision (pre) is first
interpolated.Next, themAP is the averageAPacross all classes,which canbe
defined as follows:

mAP ¼ 1
M

XM

i¼1

APi ð7Þ

whereM is defined as the number of classes.

Data availability
Our datasets follow the COCO format which is standard protocol in
computer vision. Several examples of the real-time scenes are available in the
GitHub repository (https://github.com/KIST-CSRC/DenseSSD/tree/main/
dataset/test_sample). The full dataset can be accessed via the link: https://
doi.org/10.5281/zenodo.7687879.

Code availability
The code for the pre-trainedmodel of DenseSSD is available in the GitHub
repository (https://github.com/KIST-CSRC/DenseSSD). This repository
also provides entire code explanation, and educational version code to
utilize for other scope, such as Jupyter notebook. All the codes are written in
Python 3.7, and they work well in Python versions of 3.7, 3.8, and 3.9. The
architecture of DenseSSD is implemented using PyTorch 1.7.
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