
Article https://doi.org/10.1038/s41467-024-54067-7

OCTOPUS: operation control system for task
optimization and job parallelization via a
user-optimal scheduler

Hyuk JunYoo1,2, Kwan-Young Lee 2 , DonghunKim 1 &SangSooHan 1

The material acceleration platform, empowered by robotics and artificial
intelligence, is a transformative approach for expediting material discovery
processes across diverse domains. However, the development of an operating
system for material acceleration platform faces challenges in simultaneously
managing diverse experiments from multiple users. Specifically, when it is uti-
lized bymultiple users, the overlapping challenges of experimental modules or
devices can lead to inefficiencies in both resource utilization and safety hazards.
To overcome these challenges, we present an operation control system for
material acceleration platform, namely, OCTOPUS, which is an acronym for
operation control system for taskoptimization and jobparallelization via a user-
optimal scheduler. OCTOPUS streamlines experiment scheduling and opti-
mizes resource utilization through integrating its interface node, master node
andmodule nodes. Leveraging processmodularization and a network protocol,
OCTOPUS ensures the homogeneity, scalability, safety and versatility of the
platform. In addition, OCTOPUS embodies a user-optimal scheduler. Job par-
allelization and task optimization techniquesmitigate delays and safety hazards
within realistic operational environments, while the closed-packing schedule
algorithm efficiently executes multiple jobs with minimal resource waste.
Copilot of OCTOPUS is developed to promote the reusability of OCTOPUS for
potential users with their own sets of lab resources, which substantially sim-
plifies the process of code generation and customization through GPT recom-
mendations and client feedback. This work offers a solution to the challenges
encountered within the platform accessed by multiple users, and thereby will
facilitate its widespread adoption in material development processes.

The material acceleration platform (MAP) has revolutionized material
discovery through extensive exploration of the chemical space in
diverse domains, including organic molecules, perovskites, colloidal
quantum dots, and nanoparticles1–4. Through the integration of
robotic automation and AI-based experimental planning, MAP has
shown promising potential in enhancing the search efficiency for the
target materials5–8 while ensuring reliability in surveillance-free

environments9–12. However, the scalability and accessibility of MAP
with multiple users have been impeded by limitations in experimental
device sharing and resource allocation, necessitating advanced
research on operating system (OS).

The advent of OS for MAP, exemplified by Chemputer and Che-
mOS, has provided a promising pathway toward integrated manage-
ment systems13,14. Yet, their accessibility remains restricted and is

Received: 16 April 2024

Accepted: 29 October 2024

Check for updates

1Computational Science Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea. 2Department of Chemical and Biological
Engineering, Korea University, Seoul, Republic of Korea. e-mail: kylee@korea.ac.kr; donghun@kist.re.kr; sangsoo@kist.re.kr

Nature Communications | (2024) 15:9669 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5637-1009
http://orcid.org/0000-0002-5637-1009
http://orcid.org/0000-0002-5637-1009
http://orcid.org/0000-0002-5637-1009
http://orcid.org/0000-0002-5637-1009
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54067-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54067-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54067-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54067-7&domain=pdf
mailto:kylee@korea.ac.kr
mailto:donghun@kist.re.kr
mailto:sangsoo@kist.re.kr
www.nature.com/naturecommunications

primarily constrained by single-researcher execution and limited
applicability. Additionally, the inefficiency of device resource alloca-
tions due to the lack of experimental device sharing across different
applications poses scalability challenges15–17. Addressing these con-
straints requires a paradigm shift toward a multiuser system, which
necessitates the development of a central management platform with
a master/node relationship capable of managing experimental equip-
ment efficiently18. Central to this endeavor, is the modularization of
independent experimental processes to facilitate widespread equip-
ment sharing across diverse applications. However, the development
of an OS for multiuser systems has posed challenges to standardized
methodologies, primarily stemming from equipment heterogeneity,
platform delocalization, and safety concerns19–27. Thus, there is a
pressing need for extensive research to develop an advanced OS for
MAP accessed by multiple users.

When implementing central management systems for processing
diverse experiments from multiple users, challenges such as module
and device overlap are persistent, leading to resource allocation inef-
ficiencies and safety hazards16,17. Module overlap constraints, for
instance, result in time wastage and operational inefficiencies, while
device overlap issues exacerbate safety concerns from collisions of the
activity radius. Addressing these challenges requires a comprehensive
scheduling approach that considers resource allocations, safety pro-
tocols, and operational efficiencies within realistic environments.

In response to these challenges, we introduce OCTOPUS, an
acronym for an operation control system for task optimization and
job parallelization via a user-optimal scheduler, which is designed to
streamline experimental task scheduling, optimize resource utiliza-
tion, and enhance safety protocols. OCTOPUS comprises three core
components— an interface node, master node, and module nodes—
that facilitate client request handling and experimental task sche-
duling. Leveraging process modularization and a network protocol,
OCTOPUS ensures homogeneity, scalability, safety, and versatility
within a central management platform. OCTOPUS embodies use-
optimal schedulers; it integrates job parallelization techniques to
mitigate delays by leveraging device standby times, while the task
optimization algorithms prevent safety hazards stemming from
device collisions or sharing within realistic operational environ-
ments. Additionally, the closed-packing schedule (CPS) algorithm
enables module resources to be maximally utilized via compact
packing. The user-optimal scheduler (US) in OCTOPUS addresses
several challenges encountered within MAP accessed by multiple
users and will catalyze its widespread adoption for expedited dis-
covery of novel materials.

Results
Terminology definition
The intricate nature of the individual components within the MAP
necessitates a standardized terminology to eliminate potential con-
fusion. In response, recent research has advocated for a comprehen-
sive summary of terms and definitions pertinent to MAP28. Expanding
upon this effort, we present a detailed elucidation of the structural
framework underlying MAP, which encompasses four primary
components, platforms, modules, tasks, and actions (Supplemen-
tary Fig. S1).

The platform serves as the foundational framework that inter-
connects experimental resources, facilitating automated experiments
to cater to the diverse needs of multiple users. The concept of plat-
forms has been increasingly emphasized in recent advancements29–31.
Within a platform, modules represent the fundamental building
blocks, each dedicated to executing a specific experimental process.
Examples of modules include “BatchSynthesis”, “FlowSynthesis”,
“SprayCoating”, “Filtration” and “UV‒Vis”. Each module encapsulates
the requisite functionalities necessary for its designated experimental
process.

A task delineates the granular steps comprising a specific
experimental process within a module. For instance, tasks within the
“BatchSynthesis” module include “PrepareContainer”, “AddSolution”,
“Stir”, “Heat”, “Mix” and “React”, among others. Actions, on the other
hand, denote the discrete operations of the experimental devices
required for task execution. Experimental devices such as robotic
arms, pipettes, and stirrers execute various actions to accomplish a
task within a module. For example, the “PrepareContainer” task
involves sequential actions by a robotic armof (1) opening vial storage,
(2) picking vials and (3) placing vials on a stirrer (Supplemen-
tary Fig. S1).

Through this structured framework, a MAP harmoniously
orchestrates all the components, empoweringusers to executedesired
experiments with high precision and efficiency. This hierarchical ter-
minology definition not only enhances clarity and comprehension
within the field but also facilitates seamless communication and col-
laboration among researchers and practitioners working within the
automated experimentation realm.

Architecture of OCTOPUS
The architectural blueprint of OCTOPUS is depicted in Fig. 1, which
highlights and draws inspiration from the adaptive nature of the
octopus. OCTOPUS, which comprises three integral components, the
interface node, master node, and module nodes, orchestrates the
seamless execution of the experimental modules within the MAP.

The interfacenode serves as thenexus, bridgingmultipleusers (or
clients) in remote environments to the MAP infrastructure. Next, the
master node plays a central role in managing a myriad of tasks and
actions, employing a sophisticated suite of six components, a job
scheduler, a task generator, a task scheduler, an action translator, an
action executor, and a resourcemanager. Finally, themodule nodes of
OCTOPUS are meticulously modularized to accommodate individual
experimental processes, as illustrated in Fig. 1. Upon receiving
experimental action directives from the master node, the module
nodes initiate modularized robotic operations, encompassing a spec-
trum of actions such as robotic armmaneuvers, solution dispensation
and stirrer activation, among others. The hierarchical structure of
OCTOPUS (interface node → master node → module nodes) and the
harmonious integration of these components elucidate the intricate
workflow of the platform.

Job submission via the interface node and job scheduler of the
master node
The interface node within OCTOPUS functions as a command line
interface (CLI), enabling simultaneous job submissions from multiple
clients, as illustrated in Fig. 2.Notably, recent advancements in theuser
interface design for MAP have primarily been tailored to receiving a
single job within an OS13,14,19–24. However, the ability to accommodate
multiple job submissions concurrently is paramount in enhancing the
efficiency of a MAP25. Thus, the interface node, bolstered by a multi-
thread pool, enables numerous clients to seamlessly request remote
experiments across multiple applications, akin to a computing server
(Fig. 2). Notably, OCTOPUS operates real chemical experiments rather
than computational tasks, distinguishing it from traditional computing
server systems32,33.

Clients are required to generate job scripts based on the Java-
Script object notation (JSON) format, and examples of job scripts are
provided in Supplementary Fig. S2. These job scripts cater to a spec-
trum of client demands, ranging from manual experiments with pre-
defined input conditions (e.g. a model with the name of “Manual” in
Supplementary Fig. S2a) to autonomous experiments enabled by AI-
decision processes (e.g., model with the names of “BayesianOptimi-
zation”, “DecisionTree” and “BayesianNeuralNetwork” in Fig. S2b). The
model names could be changed by the clients depending on the type
of AI model built for experimental planning on the platform.

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 2

www.nature.com/naturecommunications

The interface node is responsible for managing the client login
process and enforcing stringent security policies through Auth0 API
(application programming interface) functions while awaiting client
commands (Supplementary Fig. S3). Once authenticated, clients sub-
mit job scripts via CLI, leveraging portable batch system commands,
with detailed examples provided in Supplementary Fig. S432,33. This
transformation of the local platform into a client/server based ubi-
quitous platform has profound implications for research continuity,
particularly in scenarios constrained by temporal and spatial limita-
tions, such as those imposed by COVID-1934,35.

The master node of OCTOPUS embodies a central management
system capable of orchestrating diverse experiments for multiple
clients18. Within themaster node, the job scheduler, which comprises a
job ID generator, job modeling unit, job storage, and three distinct
queues (waiting, executing, and holding), plays a pivotal role in sche-
duling jobs for the execution of real experiments, as illustrated in
Fig. 2. Upon job submission, the job ID generator assigns a unique
identifier (ID) to each job, facilitating orderly processing based on
submission order. This job ID is subsequently transferred to the job
modeling unit, which generates specific job configurations based on
the provided job script, comprising process recommendations (man-
ual vs. autonomous), module and task sequences, and experimental
conditions. Subsequently, the job storage organizes the generated
jobs, awaiting the triggering decision.

The triggering decision, determined by various factors, including
module resource availability and experimental device status, directs
the job execution sequence. If the job trigger decides to execute the
next job, it transitions the job ID from the waiting queue to the
executing queue for real experiment executions (Supplementary

Fig. S5). Moreover, a holding queue addresses the safety concerns
inherent in surveillance-freeMAP environments. In the event of severe
safety hazards involving, for example, inflammable or hazardous
chemicals12, the platform automatically places the job on hold, ensur-
ing user safety. Clients retain the autonomy to restart or terminate
holding jobs via predefined commands. Several examples of job
management (submission, status check, hold, restart, and deletion) via
CLI are provided in Supplementary Fig. S6. We also provide Supple-
mentary Movie 1, where the process of logging in, and performing
remote and simultaneous job submissions by twousers in the interface
node of OCTOPUS is recorded for clarity.

Job executions in the master node
Following the job submissions in the interface node,wepresent the job
execution workflow in the master node, incorporating the seven
components of job scheduler, task generator, task scheduler, action
translator, action executor, resourcemanager, anddatabase,whichare
specifically tailored for closed-loop experiments, as illustrated in Fig. 3.

We empower the task generator to retrieve experimental device
information, including physical specifications and the setup environ-
ment, from the resource manager. For instance, when preparing to
execute the “AddSolution” task, the task generator accesses informa-
tion detailing the device specifications and setup environments of
stock solution types and concentrations, among others. Notably, the
dynamic updating of experimental device information from the
resource manager enhances operational flexibility (Supplementary
Fig. S7a and b). The task generator integrates the job script with actual
experimental device information to complete the predefined task
template (in JSON format) containing the experimental conditions and

Fig. 1 | Schematic design of OCTOPUS. The architecture of OCTOPUS comprises
three main components, the interface node, master node, and module nodes.
Multiple clients submit job scripts via CLI based on the JavaScript object notation
(JSON) format. The master node manages the submitted jobs, overseeing the job
scheduler, task generator, task scheduler, action translator, and action executor.

The job scheduler prioritizes and schedules jobs, while the task generator creates
tasks based on the received script. The task scheduler provides efficient resource
allocations, and the action translator converts task information into device com-
mands. Module nodes operate experimental devices based on instructions from
the action executor.

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 3

www.nature.com/naturecommunications

task sequences (Fig. 3 and Supplementary Figs. S7c–e). Subsequently,
the task scheduler supervises resource allocations for task executions
by obtaining information on the location indices from the resource
manager (Fig. 3 and Supplementary Fig. S8).

Crucially, the abstraction of tasks, as exemplified in Chemputer14

and HELAO-async24, ensures adaptability across different platforms by
omitting specific device operation and location details14,24. To con-
cretize abstracted tasks, we implement an action translator, which
translates abstracted tasks into concrete actions, incorporating pre-
defined action sequences and device location information. For
instance, the “AddSolution” task involves the serial actions of initi-
alizing a pump, moving a dispenser, and injecting a solution, each
executed by different devices (Fig. 3 and Supplementary Fig. S9). Next,
the action executor transmits device commands for real experiment
execution, employing a transmission protocol that follows predefined
data types to module nodes. These data types, including the job ID,
device name, action type, actiondata, andmode type, are encoded and
transmitted to module nodes via the Transmission Control Protocol/
Internet Protocol (TCP/IP) (Fig. 3 and Supplementary Fig. S10). The
modules execute experimental action and return the resulting data to
the database for subsequent experimental planning. More detailed
information on the resulting data structure is provided in Supple-
mentary Fig. S11.

Network protocol-based modularization
Tomanipulatemultiple jobswithinOCTOPUS, processmodularization
is key for efficiently operating experimental processes. The network
protocol was implemented for modularization, which has also been
demonstrated in the work of Stein and coworkers36, for facilitating
efficient communication in a brokering system named FINALES (fast
intention-agnostic learning server). We conceptualized four key con-
cepts to explain the benefits of using experimental process modular-
ization based on network protocols, which include homogeneity,
scalability, safety, and versatility, as illustrated in Fig. 4.

First, a challenge may arise when different manufacturers utilize
various programming languages and operating systems for their own

experimental devices, and such heterogeneity may hinder seamless
communication between module nodes and devices. Examples of the
heterogeneous environments among devices in the “BatchSynthesis”
and “UV‒Vis” modules are provided in Supplementary Fig. S12a. To
achieve a homogeneous environment in OCTOPUS, we opted to con-
nect the experimental devices via the TCP/IP technique (Fig. 4a). Since
most programming languages, including C, C++, Python, JAVA and
JavaScript, support TCP/IP regardless of the operating system (both
Linux and Windows), we independently created device servers to
facilitate communications between module nodes and devices via
TCP/IP, ensuring platform homogeneity (Supplementary Fig. S12b).

Second, the TCP/IP network protocol not only ensures homo-
geneity but also offers significant advantages in terms of scalability.
Scalability in MAP refers to the ability to connect experimental mod-
ules of multiple laboratories, even across different nations, as illu-
strated in Fig. 4b. Whenmultiple experimental modules are joined in a
TCP/IP-based network, it logically becomes part of the same network,
overcoming spatial constraints in MAP and providing infinite possibi-
lities for platform scalability. Notably, synthesizedmaterials cannot be
transferred across different regions due to practical issues, including
time costs and material degradation. Thus, the absence of material
synthesis modules in a specific laboratory could hinder flexible utili-
zation for diverse applications, despite all experimental modules
(modules for material synthesis, characterization, and property eva-
luation) being connected within a single network. To address this, we
proposed customizing material synthesis modules in each laboratory
and integrating all the other local modules into a single platform
despite remote distances via the TCP/IP-based network protocol
(Fig. 4b)20,21,37,38. The method for integrating network protocols is
detailed in Supplementary Fig. S13.

Third, to minimize safety concerns arising from physical dis-
connections, we implemented the user datagram protocol (UDP) with
TCP/IP to monitor physical connection issues for platform safety, as
illustrated in Fig. 4c. If miscommunication occurs between the master
node, module nodes due to a physical disconnection betweenmodule
nodes and experimental devices, the UDP-based broadcast executes

Fig. 2 | Scheme of job submission via the interface node and job scheduler of
the master node. The interface node enables clients to submit job scripts, with
concurrent handling supported by a multithread pool. The job scheduler in the
master node consists of six components, a job ID generator, jobmodeling unit, job
storage, and three queues (waiting, executing, and holding), along with a job

trigger. Upon receiving a job script, the job ID generator assigns a unique ID and
sends it to the waiting queue and job modeling unit. The job trigger monitors job
executions andmoves jobs from the waiting queue to the executing queue. Clients
can manage the submitted jobs remotely via command lines in the interface node.

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 4

www.nature.com/naturecommunications

an emergency stop for the other modules in the internet network to
prevent safety issues in surveillance-free systems (Fig. 4c and Supple-
mentary Fig. S14a). In addition to the emergency stop, an alert system
based on messengers was implemented to provide researchers with
notification and monitoring systems, which aids in swiftly recovering
the platform from safety issues (Fig. 4c and Supplementary
Fig. S14b–e).

Fourth, a key challenge in MAP is that most platforms have thus
far been developed only for a specific purpose; experimental devices
are limited to a specific application14,39–41. However, with TCP/IP-based
process modularization, a static platform can evolve into a versatile
platform (Fig. 4d). Researchers can selectively adopt modules tailored
to their own applications, allowing customized process designwithin a
single platform and ensuring the versatility of the platform.

Job parallelization to address the module overlap challenge
The compositions of the master node and module nodes and their
functionalities are investigated with detailed examples. In the follow-
ing sections, the user-optimal scheduler (US) developed within
OCTOPUS is explained, incorporating three techniques, job paralleli-
zation, task optimization, and CPS.

When multiple clients attempt to utilize a MAP with many mod-
ules, module overlap issues may occur. Customized scheduling algo-
rithms are necessary to addressmodule overlap issues effectively. One
conventional approach is job serialization based on the FCFS (First-
Come-First-Serve) concept (Fig. 5a), where the priorities of module
usage are assigned based on the job submission order. However, in job
serialization, device standby times, where no significant actions are
performed in terms of devices, may substantially impair job execution
efficiency. An exampleof device standby times is the chemical reaction
period (“React” task) in the “BatchSynthesis”module, where chemical
reactions occur in chemical vessels but no actions are performed in
terms of devices.

To improve module resource utilization, we introduced job par-
allelization by leveraging device standby times (Fig. 5a and Supple-
mentary Fig. S15). During the device standby times of a preceding job,
the following job can run in parallel without hindering previously
started tasks. As illustrated in Fig. 5b, while job ID 0 progresses during
the “React” task in the “BatchSynthesis” module, the “Pre-
pareContainer” task in the next job (job ID 1) can be executed simul-
taneously by leveraging the device standby time (chemical reaction
period) of the prior “React” task (Fig. 5b). This specific example of job
parallelization is provided in Supplementary Movie 2.

To evaluate the impact of job parallelization on time efficiency, we
conducted virtual experiments on catalysis processes, which typically
involve longdevice standby times for chemical reactions. In this test, we
define 10 virtual modules related to catalyst synthesis (“BatchSynth-
esis”, “BallMilling”), preprocessing (“Washing”, “Filtration”, “Drying”,
“InkPreparation”, “SprayCoating”), characterization (“XRD”), and prop-
erty evaluation (“HalfCellTest”, “FullCellTest”). Each module involves
both a device execution time and a device standby time, as described in
Supplementary Figs. S16 and S17. Seven different types of catalysis
experiments utilizing parts of these modules were performed (Fig. 5c,
Supplementary Figs. S16 and S17). Figure 5d compares the results
between job serialization and parallelization using bar charts. Three
performance metrics were implemented, including “job waiting time”,
“job turnaround time” and “job total time” (Supplementary Fig. S18). Job
waiting time reflects the difference between the job submission and
start time, providing client-centric performance insights42. “Job turn-
around time” indicates the duration between the start of a job and
completion of a job, and it offers administrator-centric performance
insights. “Job total time”, the sum of “job waiting time” and “job turn-
around time”, reflects the overall job execution efficiency.

Job serialization entails the sequential execution of modules
based on a priority order. Analysis of the performancemetrics for time
efficiency reveals that, in serialized jobs, the lower-priority jobs,

Fig. 3 | Job executions at the master node. Job executions follow a closed-loop
experimentation process involving several components, the job in the executing
queue, the resource manager, the task generator, the task scheduler, the action
translator, the action executor, and the database.When a job is ready for execution,
it is matched in the job storage, initiating the experiment. Experiment information

is transferred to the task generator, which generates tasks based on experimental
conditions and device information. The task scheduler manages task executions,
and the action translator converts task information into device commands. After
executing the commands, the results are stored in the database, and the job
recommends the next experimental conditions in a closed-loop manner.

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 5

www.nature.com/naturecommunications

determined by job submission order, may experience substantially
increased waiting times due to module overlaps. In contrast, job par-
allelization aims to reduce waiting times by leveraging the device
standby times within each module. Consequently, for all seven jobs in
these virtual tests, a significant reduction in “job total time” is achieved
via job parallelization compared to job serialization (Fig. 5d). For
example, for job ID 3, “job total time” decreased significantly with job
parallelization (from 10 h to 6.5 h) by leveraging the device standby
time of modules utilized in the preceding jobs, such as the “Batch-
Synthesis”module of job ID 1. Similarly, in Job ID 4, “job total time”was
nearly halved with job parallelization (10 h to 5.5 h), leveraging device
standby times in the module, such as the centrifugation of the
“Washing”module, oven usage of the “Drying”module and scanning of
the “XRD”module, as shown in Supplementary Fig. S16. As a result, job
parallelization significantly improves time efficiency, reducing both

“job waiting time” and “job turnaround time”, ultimately shortening
“job total time” (Fig. 5d and Supplementary Table S1).

Task optimization with masking table for preventing device
overlaps
Up to this point, we operated under the assumption that each module
functions independently, with the experimental devices operating
without interference. However, asmultiple clients submit job requests,
the likelihood of multiple tasks within the same module running con-
currently increases. In such scenarios, experimental device collisions
may occur, raising potential safety concerns (Fig. 6a and Supplemen-
tary Fig. S19). Moreover, the MAP cost implications are substantial, as
each experimental device typically entails significant expenditures to
ensure experimental reliability and precision15–17. In this regard,
implementing device sharing between different modules has become

Fig. 4 | Network protocol-aided processmodularization. a This figure illustrates
the use of a device server based on TCP/IP to create a homogeneous experimental
environment, even with multiple devices based on different OS or programming
languages. b This figure illustrates an example of experimental processes from
multiple laboratories across different nations. Modules for material synthesis,
characterization, and property evaluation can be joined into a single platform by

leveraging internal (red line) or external (blue line) TCP/IP-based networks. c The
flow chart depicts algorithms for the heartbeat and shutdown function with a UDP-
based broadcast, ensuring stability between the master node, module node, and
experimental devices. d This figure illustrates an example of a versatile platform,
where different sets of modules can be used for diverse applications.

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 6

www.nature.com/naturecommunications

imperative for cost savings within limited budgets, as demonstrated in
recent advances30,43–45. For instance, a robotic arm may serve for both
the “BatchSynthesis” and “UV‒Vis” modules, as illustrated in Fig. 6b
and Supplementary Fig. S19, enabling cost savings through shared
utilization8. However, when multiple modules attempt to execute
individual tasks simultaneously, conflicts may arise regarding the
prioritization of tasks for the robotic arm. Consequently, task opti-
mization is urgently needed to prevent device collisions within
the same module, and device overlap challenges across different
modules.

To overcome these challenges, we introduce a task optimization
technique with a masking table. In our approach, each module con-
tinuously updates the device status in a tabular format retrieved from
the resource manager. Devices currently in use by ongoing tasks are
assigned as “True”, while unused devices are marked as “False”, as
shown in the device status table example in Fig. 6c. The resource
manager dynamically updates the device status table in real-time.
Next, it is essential to predefine masking tables for each task, which
identify the devices required for a specific task as “True” and those not
needed as “False”. For instance,whenperforming the “GetAbsorbance”

Fig. 5 | Jobparallelization to address themoduleoverlap challenge. a Schemeof
job serialization and parallelization, showcasing device execution time (black) and
device standby time (shaded black). b Images representing an example of job
parallelization. The enlarged image highlights parallelized batch synthesis.
c Visualization of module execution results comparing job serialization and

parallelization. Shaded red boxes represent the delay time between module
executions. d Performance metrics of job serialization and parallelization, includ-
ing the job waiting time, job turnaround time, and job total time. Source data of
Fig. 5 are provided in the Source Data file.

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 7

www.nature.com/naturecommunications

task in the “UV‒Vis” module, devices such as UV‒Vis spectroscopy,
robotic arms, and pipettes are involved and are thusmarked as “True”,
while the other devices are marked as “False” to create task-specific
masking tables (Fig. 6c). Prior to performing a specific task, the AND
Boolean operation is performed between the device status table and
the masking table for the task, resulting in a table for “hold criteria” to
determine whether to proceed with the next task (Supplementary
Fig. S20). If all hold criteria indicate “False”, the tasks are executed in
parallel, whereas if any of the logical results are found “True”, the
system waits until the ongoing task is completed, and all the hold
criteria indicate “False”. Examples of masking tables are provided in

Supplementary Fig. S21, and an actual example of a task optimization
process with a masking table is provided in Supplementary Movie S3.
In summary, when experimental devices are shared betweenmodules,
task optimizationwithmasking tables enables cost-saving benefits and
enhances the efficiency of device utilization while avoiding device
collisions and ensuring safety.

The closed-packing schedule for optimizing module resources
In computing server systems with a finite number of cores, resource
allocation considerations areparamount, and areoften documented in
job scripts32,33. Similarly, in the context of MAP, resource management

Fig. 6 | Task optimization using a masking table. a Example of device overlap
challenge - device collision in the same module. b Example of device overlap
challenge - device sharing between different modules. c Schematic algorithm of

task optimization with a masking table, employing the AND Boolean operation
between the device status table and masking table for a specific task.

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 8

www.nature.com/naturecommunications

extends to modules and experimental devices. Here, device resources
denote the maximum number of experiments that each module can
accommodate. For example, the “BatchSynthesis” module’s resource
could be defined by the maximum number of vials simultaneously
processable by a magnetic stirrer, while in the “UV‒Vis” module, it
could also be determined by the maximum number of vial holders
available for UV‒Vis spectrum measurements (Supplementary
Fig. S22). Thus, given the limited availability of resources in each
module, scheduling methods that account for these constraints are
essential in practical platforms.

To efficiently execute multiple jobs within such constraints, we
introduce the closed-packing schedule (CPS) algorithm (Fig. 7 and
Supplementary Fig. S23). The core concept of CPS lies in splitting tasks
in a single job intomultiple batches tomaximally utilize the remaining
resources via compact packing. An example of CPS is illustrated in
Fig. 7, where three jobs (job IDs 1, 2, and 3) are sequentially submitted
with different batch sizes (the number of required vials) of eight, four,
and eight, respectively, and a stirrer can accommodate up to 16 vials.
With active jobparallelization, at the executionof job ID3, 12 resources
out of a total of 16 are already occupied by preceding jobs, leaving only
4 resources unused. Then, theCPS divides the tasks of job ID 3 into two
batches to allow the first batch to be executed first by fully occupying
the 4 unused resources (compact packing), and to allow the other
batch to be executed later as soon as the preceding jobs are completed
and resources become available. As demonstrated in the example, the
CPS aims to effectively minimize the waste of module resources by
splitting the tasks within a job based on the computation of the
remaining resources.

Performance test of the user-optimal scheduler
In the previous sections, the user-optimal scheduler developed within
OCTOPUS was explained and involved three distinct scheduling
methods, job parallelization, task optimization, and CPS. To maximize
scheduling efficiency, these three schedulingmethodswere integrated
within OCTOPUS, resulting in a united scheduling system named the
user-optimal scheduler (US) in this paper. To benchmark the US, we
introduced the conventional FCFS to prioritize jobs based on their
order of submission (Supplementary Fig. S24)46. FCFS executes jobs
sequentially based on a priority order. We chose the FCFS algorithm as
the baseline scheduler for comparison due to its fairness in executing
jobs based on its priority order, which is crucial in multiclient systems.

Figure 8a, b visualizes the execution time efficiency in processing
multiple jobs across the twodifferent scheduling schemes of FCFS and

US.We employed aplatform capableof simulating device collision and
sharing issues to reflect a realistic environment8. In these comparative
tests, 11 jobswith different batch sizes are submitted sequentially, all of
which require the use of either the “BatchSynthesis” or “UV‒Vis”
module (Supplementary Fig. S25). It is important to clearly understand
that, in the tests, the techniques of job parallelization, task optimiza-
tion, and CPS-based resource allocation, developed before, are active
only for the US, whereas they are not active in the FCFS scheduling
scheme.

Through the observation of the scheduling results, we demon-
strate the efficacy of the US, particularly in terms of “job waiting
time”. The benefits of combined job parallelization and CPS are
pronounced in many cases. For example, job IDs 1, 8, and 10 sig-
nificantly reduced “job waiting time” (8.92 h to 0.63 h for job ID 1,
10.21 h to0.72 h for job ID 8, and 10.97 h to0 h for job ID 10). The time
reductions are attributed to both leveraging device standby times
and splitting jobs via CPS. Notably, these jobs are parallelized during
the “React” task (device standby time) in the “BatchSynthesis” mod-
ule of the preceding jobs (Fig. 8b, Supplementary Fig. S26 and
Table S2). Similarly, job ID 4 also benefits from both job paralleliza-
tion and CPS, leading to a reduction in “jobwaiting time”, as shown in
Fig. 8c (11.72 h to 0 h for job ID 4). This job is parallelized with the
preceding job ID 3 as the CPS splits the job according to the
remaining resources of the “UV‒Vis” modules (Fig. 8b and Supple-
mentary Fig. S27). Meanwhile, the benefit of the task optimization
technique is well observed in many cases, such as job IDs 2, 3, 4, 6, 7,
and 9. Since the “BatchSynthesis” module and the “UV‒Vis” module
share a robotic arm, the simultaneous execution of these two mod-
ulesmay cause safety hazards from the device sharing environments.
However, with active task optimization, concurrent executions of
both modules were safely performed, as demonstrated in Supple-
mentary Fig. S28, Table S2, and Movie S3.

By minimizing “job waiting time”, the US also proved more effi-
cient in terms of “job total time” compared to the conventional FCFS
scheme. However, we observed an overall and slight increase in “job
turnaround time” for theUS, potentially resulting fromaduplicationof
device standby time (Supplementary Fig. S29). For Job IDs 1, 8, and 10,
our scheduling system duplicates the device standby time associated
with the “React” task, as the jobs are split based on the remaining
resources. This redundancy contributes to the accumulation of “job
turnaround time”. Overall, while the US significantly reduces “job
waiting time”, some delays in “job turnaround time”may occur due to
device standby time duplications.

Fig. 7 | Scheme of the closed-packing schedule. The task scheduler with the CPSmethod aims to utilize the remaining resources of eachmodule efficiently. Job 3, with a
batch size of eight, is split into four experiments based on the remaining four stirrer resources in the “BatchSynthesis” module.

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 9

www.nature.com/naturecommunications

Overall, by analyzing the performance metrics for time effi-
ciency, the US emerged as highly effective, saving time across all jobs
in terms of “job waiting time” (Fig. 8c). Although there is a slight
increase in “job turnaround time” due to duplications of device
standby time by CPS (Fig. 8d and Supplementary Fig. S27), the sig-
nificant improvement in efficiency in terms of “job waiting time”
renders the US more efficient, leading to a substantial reduction in
“job total time”, compared to conventional FCFS (Fig. 8e and Sup-
plementary Table S2).

Copilot of OCTOPUS
If a client wants to use the OCTOPUS system for a new set of lab
resources, it will require a lot of hands-on code generation and cus-
tomization for the integration within OCTOPUS. A partial or complete
modification is required for generating components of the task gen-
erator, action translator, action executor, resource manager, and
module node, as illustrated in Supplementary Fig. S30. To improve the
reusability of OCTOPUS, we developed “Copilot of OCTOPUS” to offer
a convenient module registration process via automated code gen-
erations (Fig. 9). Copilot of OCTOPUS features GPT (generative pre-
trained transformer)-based recommendations and client feedback to
streamline module generation and validation. In the GPT prompt
design, a few-shot learning with several examples was performed to

enhance its prediction accuracy, and more details on prompt engi-
neering are described in Supplementary Figs. S31–S34.

Copilot of OCTOPUS auto-generates the required codes and files
to run OCTOPUS, and the process is as follows. The first step is that a
client needs to input simple module information in the ‘copilot.py’
Python file. The execution of ‘copilot.py’ generates a list of actions and
tasks based on the input module information through GPT recom-
mendations, and then the client reviews and modifies the results
(Fig. 9a, b and Supplementary Figs. S31 and S32), ensuring the adap-
tation to diverse applications and user preferences. Next, the action
sequences for a specific task aswell as task templates are generated via
GPT recommendations and client feedback (Fig. 9c, d and Supple-
mentary Fig. S33). In this stage, the data type validations are generated
to check for invalid data in the task template, using Pydantic (https://
github.com/pydantic/pydantic) to predefine the JSON data type
(Fig. 9d and Supplementary Fig. S34). Lastly, it updates the routing
table for managing IP addresses and ports for different modules,
identifies the tasks with long device standby times, and completes the
device status table andmasking tables with client feedback. As a result
of these sequential processes, all required codes and files are auto-
generated, as described in Supplementary Table S4. The description of
inputs and outputs of GPT was demonstrated in Supplementary Table
S3.Newusers cannoweasily generate diverse codes for anewset of lab

Timeline of Job Submission

Th
ro

ug
hp

ut
 o

f
Ba

tc
h

Sy
nt

he
si

s
Th

ro
ug

hp
ut

 o
f

U
V-

Vi
s

Time (h)

Time (h)

User-Optimal Schedulers

0 1 2 3 4 5 6 7 8 910

Job ID

FCFSa

Th
ro

ug
hp

ut
 o

f
Ba

tc
h

Sy
nt

he
si

s
Th

ro
ug

hp
ut

 o
f

U
V-

Vi
s

Timeline of Job Submission

0 1 2 3 4 5 6 7 8 910

Job ID

c FCFS US

6543210 10987

18
16
14
12

0

10
8
6
4
2

Jo
b

w
ai

tin
g

tim
e

(h
)

6543210 10987

Job ID

b

FCFS US

6543210 10987

18
16
14
12

0

10
8
6
4
2

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(h
)

6543210 10987

Job ID

d

FCFS US

6543210 10987

18
16
14
12

0

10
8
6
4
2

Jo
b

to
ta

l t
im

e
(h

)

Job ID

e

Fig. 8 | Performance comparison of scheduling algorithms for multiple jobs.
a, b Job execution timelines for 11 jobs for first-come-first-served (FCFS) and user-
optimal scheduler (US). c–e Performance metrics of “job waiting time”, “job

turnaround time” and “job total time” for FCFS and US. Source data of Fig. 8 are
provided in the Source Data file.

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 10

https://github.com/pydantic/pydantic
https://github.com/pydantic/pydantic
www.nature.com/naturecommunications

Fig. 9 | Copilot ofOCTOPUS.Copilot of OCTOPUS consists of seven steps for code
generation and customization in OCTOPUS. Gray boxes represent the generated
codes. a Action generation: Device actions are facilitated through GPT recom-
mendations and a client feedback system. Code generation occurs within the
module node and device server. b Task generation: Module tasks are generated
through GPT recommendations and the client feedback system. c Action sequence
generation: Action sequences for tasks are generated through GPT recommenda-
tions and the client feedback system. Before the GPTmodeling process begins, the
generated tasks and actions are added to the GPT prompt. d Task template and
type validation: Task templates and type validations are generated through GPT
recommendations and the client feedback system. Before the GPT modeling

process begins, the generated tasks are added to theGPTprompt. Code generation
takes place in the task generator and action translator. e IP address and port
number registration: This step establishes connections with the module node.
Code generation occurs in the action executor. f Task registration with long device
standby time: Tasks with long device standby times are registered through the
client feedback system using the generated tasks. Code generation takes place in
the job trigger. g Device registration: New devices are registered in the device
status table and masking table for task execution through the client feedback
system, using the generated tasks and actions. Code generation takes place in the
resource manager.

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 11

www.nature.com/naturecommunications

resources via Copilot of OCTOPUS, requiring only minimal modifica-
tions to ‘copilot.py’. Supplementary Software is appended to this
article, providing a detailed and step-by-step protocol to assist
potential clients in using Copilot of OCTOPUS without difficulty.

Copilot of OCTOPUS automates the code generation and custo-
mization for new module registration, requiring only simple input
regarding module information from clients. Copilot of OCTOPUS
streamlines operations across different lab setups by reducing the
need for manual adjustments, minimizing human error, and enabling
seamless task execution (Supplementary Figs. S30 and S34). This
automated process not only enhances operational efficiency for
module registration but also ensures the accuracy and reliability of
module integration within OCTOPUS. The significantly enhanced
reusability of OCTOPUS supports scalable MAP evolution and meets
growing industrial demands.

Although Copilot of OCTOPUS simplifies the process of code
generation and customization through GPT recommendations and
client feedback, the accuracy of these recommendations is sig-
nificantly influenced by the predefined prompts. Recent
advancements47 in prompt engineering have demonstrated that well-
customized initial prompts can enhance the quality of GPT responses.
To achieve accurate GPT recommendations, further research into
advanced prompt engineering for the Copilot of OCTOPUS is
necessary.

Discussion
CLI presents a notable departure from conventional experimentation
interfaces, potentially posing challenges for traditional experimental
experts. While familiar to researchers in computer science fields, its
adoption may present difficulties for those accustomed to hands-on
experimentation. Recent studies advocate for the development of a
user-friendly web-based interface accessible to both experimental
researchers and computational experts14,19,22,24. Additionally, an
advanced relational database management system for MAP should be
developed to accommodate differently-formatted material data using
JSON, as specified by various chosen modules.

Moreover, the integration of XR (extended reality), including VR48

(virtual reality) and AR49 (augmented reality), holds significant poten-
tial to greatly enhance the accessibility and usability of
OCTOPUS15,50–52. VR is defined as a technology that immerses users in a
completely virtual environment, and recent advancements show the
potential implementation of VR in MAP. The benefits of VR for MAP
include replicating client hand motions via remote control. Thus, VR
can be utilized for recovery motion planning in the event of robotic
device failures. The implementation of VR helps prevent safety acci-
dents and democratizes client interactions through surveillance-
free MAP.

Additionally, AR is defined as a technology that overlays virtual
elements onto real-world environments. In MAP, the AP technology
with its specialized visualization capabilities, can assist in decision-
making by displaying job status, safety alerts, AI-decision processes,
and knowledge graphs of accumulated data.

However, XR technologies are highly device-dependent, leading
to considerable variation in price, performance, and interfacing
methods across different manufacturers. Additionally, there is a
notable lack of real-time data processing infrastructure for XR devices.
These technical bottlenecks hinder the implementation of XR tech-
nologies within MAP today. Therefore, standardized interfacing pro-
tocols for integrating heterogeneous XR devices are needed, along
with the development of real-time data processing capabilities using
4G/5 G networks and blockchain-based encrypted communication
infrastructure.

In conclusion, OCTOPUS embodies a multifaceted solution that
has been engineered to overcome the challenges inherent in MAP
accessed by multiple users, OCTOPUS embodies a multifaceted

solution. First, its tripartite structure, comprising the interface node,
master node, and module nodes, orchestrates seamless client request
handling andexperimental task scheduling. Through the integrationof
process modularization and network protocol utilization, OCTOPUS
establishes a foundation characterized by homogeneity, scalability,
safety, and versatility within a central management platform. Fur-
thermore, OCTOPUS presents the US. The incorporation of job paral-
lelization techniques serves to alleviate delays, while task optimization
algorithms prevent safety hazards potentially arising from device
collisions and sharing. In addition, the development of the CPS algo-
rithm within OCTOPUS represents a significant stride in efficiently
executing multiple jobs with minimal resource wastage. Copilot of
OCTOPUS is provided to promote the reusability of OCTOPUS for
potential users, which significantly simplifies the process of code
generation and customization with GPT recommendations and client
feedback. OCTOPUS will facilitate the management of diverse experi-
ments from multiple users and thereby accelerate the widespread
adoption of MAP for expedited material development.

Methods
Virtual experiments for job parallelization leveraging device
standby times
In the virtual experiments related to Fig. 5, we defined the duration of
both the device execution time and device standby time of each
module as follows. For the “BatchSynthesis”, “Filtration”, “Ball-
Milling”, “InkPreparation”, “XRD” and “SprayCoating” modules, a
duration of 0.5 h was assigned to both device execution time and
device standby time, resulting in 1 h of total time for each module
(Supplementary Fig. S16). For the “Washing”module, which is known
for its repetitive removal of impurities, each 0.5-h duration was
assigned to one of the device execution times or device standby
times, resulting in 2 h of total time (Supplementary Fig. S16). For the
“Drying”, “HalfCellTest”, and “FullCellTest” modules, which are
known for their extended durations for bottleneck processes, dura-
tions of 0.5 h and 1.5 h, respectively, were assigned to each device
execution time and device standby time, resulting in 2 h of total time
(Supplementary Fig. S16). The time allocations in each module are
provided in detail in Supplementary Fig. S16. The experimental
devices within each module were assumed to function without
mutual interference. The combinations and sequences of modules
assigned to each job were carefully chosen based on actual experi-
mental processes, as illustrated in Supplementary Fig. S17. For
example, for job ID 0 in Fig. 5, an experiment of synthesizing and
measuring a Cu catalyst for the CO2 reduction reaction involves the
following modules in order: “BatchSynthesis”, “Washing”, “Filtra-
tion”, “Drying”, “InkPreparation” and “HalfCellTest”. The modules
used in other jobs are also described in Supplementary Fig. S17. The
virtual experiment data of job parallelization in this study are pro-
vided in the Supplementary Table S1 and Source Data file.

Experiments for task optimization with masking table
Prior to conducting experiments related to Fig. 6, we predefine the
masking tables for each task. For example in the “BatchSynthesis” and
“UV‒Vis” modules, as illustrated in Supplementary Fig. S19, the mask-
ing tables for a task represent the usage of experimental devices dur-
ing the task, including the robotic arm (shared between twomodules),
vial storage, linear actuator with solution dispenser, syringe pump,
pipette, UV‒Vis spectroscopy. For example, the “AddSolution” task in
the “BatchSynthesis” module involves the activation of a linear actua-
tor and pump; thus, these two devices aremarked as “True” and all the
other devices are marked as “False” in the masking table. The masking
tables are structured with Boolean values (True or False). Examples of
themasking table are provided in Supplementary Fig. S21. In this work,
the module and device configuration utilized in this task optimization
performance test adhered to our prior publication8.

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 12

www.nature.com/naturecommunications

Experiments for benchmarking user-optimal scheduler
The module and device configuration employed in the performance
benchmarking test in Fig. 8 are consistent with recent advancements
documented in our previous work8. Scheduling schemes of FCFS and
US are compared in realistic experimental environments. All the
resource information was stored and periodically updated by a
resource manager at each module node by using a location index
based on the listed data types (Supplementary Fig. S8). Job paralleli-
zation, task optimization, andCPS-based resource allocation are active
only for the US, whereas they are not active in the FCFS scheduling
schemes. In these benchmark tests, the 11 job scripts are submitted
based on job submission timelines, as illustrated in Supplementary
Fig. S25 and Supplementary Information/Source Data file. These 11 job
scripts contain information on the experiment type (model names of
manual vs. AI optimizations), module selection (“BatchSynthesis” or
“UV‒Vis”), batch size, number of closed-loop cycles and task config-
uration (number of task executions and device standby time). The
performance test data of the user-optimal scheduler in this study are
provided in Supplementary Table S2 and the Source Data file.

Data availability
Several examples of our result data, the codes, and related explana-
tions are provided in the following GitHub repository (https://github.
com/KIST-CSRC/Octopus) and Zenodo53. Source data are provided in
the Source Data file and Zenodo53. Source data are provided with
this paper.

Code availability
Several examplesof codes and related explanations areprovided in the
following GitHub repository (https://github.com/KIST-CSRC/Octopus)
and Zenodo53. All codes are written in Python 3.7 and all environments
can be created via requirements.txt file.

References
1. Higgins, K., Valleti, S. M., Ziatdinov, M., Kalinin, S. V. & Ahmadi, M.

Chemical robotics enabled exploration of stability in multi-
component lead halide perovskites via machine learning. ACS
Energy Lett. 5, 3426–3436 (2020).

2. Epps, R. W. et al. Artificial chemist: an autonomous quantum dot
synthesis bot. Adv. Mater. 32, 2001626 (2020).

3. Mekki-Berrada, F. et al. Two-step machine learning enables opti-
mized nanoparticle synthesis. npj Comput. Mater. 7, 55 (2021).

4. Angelone, D. et al. Convergence ofmultiple synthetic paradigms in
a universally programmable chemical synthesis machine. Nat.
Chem. 13, 63–69 (2021).

5. Häse, F., Roch, L. M., Kreisbeck, C. & Aspuru-Guzik, A. Phoenics: a
Bayesian optimizer for chemistry. ACS Cent. Sci. 4, 1134–1145
(2018).

6. Aldeghi, M., Häse, F., Hickman, R. J., Tamblyn, I. & Aspuru-Guzik, A.
Golem: an algorithm for robust experiment and process optimiza-
tion. Chem. Sci. 12, 14792–14807 (2021).

7. Häse, F., Aldeghi, M., Hickman, R. J., Roch, L. M. & Aspuru-Guzik, A.
Gryffin: an algorithm for Bayesian optimization of categorical vari-
ables informed by expert knowledge. Appl. Phys. Rev. 8, 031406
(2021).

8. Yoo, H. J. et al. Bespoke metal nanoparticle synthesis at room
temperature and discovery of chemical knowledge on nanoparticle
growth via autonomous experimentations. Adv. Funct. Mater. 34,
2312561 (2024).

9. Yoshikawa, N., Darvish, K., Vakili, M. G., Garg, A. & Aspuru-Guzik, A.
Digital pipette: open hardware for liquid transfer in self-driving
laboratories. Digit. Discov. 2, 1745–1751 (2023).

10. Yoshikawa, N. et al. Large language model for chemistry robotics.
Auton. Robots. 47, 1057–1086 (2023).

11. Jiang, Y. et al. Autonomous biomimetic solid dispensing using a
dual-arm robotic manipulator. Digit. Discov. 2, 1733–1744 (2023).

12. Tiong, L. C. O. et al. Machine vision-based detections of transparent
chemical vessels toward the safe automation of material synthesis.
npj Comput. Mater. 10, 42 (2024).

13. Sim, M., Ghazi Vakili, M., Hao, H., Hickman, R. J. & Pablo-García, S.
ChemOS 2.0: an orchestration architecture for chemical self-
driving laboratories. Matter 7, 2959–2977 (2024).

14. Steiner, S. et al. Organic synthesis in a modular robotic system
driven by a chemical programming language. Science 363,
6423 (2019).

15. Abolhasani, M. & Kumacheva, E. The rise of self-driving labs in
chemical and materials sciences. Nat. Synth. 2, 483–492 (2023).

16. Maffettone, P. M. et al. What is missing in autonomous discovery:
open challenges for the community. Digit. Discov. 2, 1644–1659
(2023).

17. Seifrid, M. et al. Autonomous chemical experiments: challenges
and perspectives on establishing a self-driving lab.Acc. Chem. Res.
55, 2454–2466 (2022).

18. Sayfan, G. Mastering Kubernetes. (Packt Publishing Ltd, 2017).
19. van derWesthuizen, C. J., du Toit, J., Neyt, N., Riley, D. & Panayides,

J. L. Use of open-source software platform to develop dashboards
for control and automation of flow chemistry equipment. Digit.
Discov. 1, 596–604 (2022).

20. Rahmanian, F. et al. Enablingmodular autonomous feedback‐loops
in materials science through hierarchical experimental laboratory
automation and orchestration. Adv. Mater. Interfaces 9, 2101987
(2022).

21. Strieth-Kalthoff, F. et al. Delocalized, asynchronous, closed-loop
discovery of organic laser emitters. Science 384, 6697 (2024).

22. Hielscher, M. M., Dörr, M., Schneider, J. & Waldvogel, S. R. LABS:
Laboratory automation and batch scheduling – a modular open
source Python program for the control of automated electro-
chemical synthesis with a web interface. Chem. Asian J. 18,
e202300380 (2023).

23. Tamura, R., Tsuda, K. & Matsuda, S. NIMS-OS: an automation soft-
ware to implement a closed loop between artificial intelligence and
robotic experiments in materials science. Sci. Tech. Adv. Mat 3,
1 (2024).

24. Guevarra, D. et al. Orchestrating nimble experiments across inter-
connected labs. Digit. Discov. 2, 1806–1812 (2023).

25. Kusne, A. G. & McDannald, A. Scalable multi-agent lab framework
for lab optimization. Matter 6, 1880–1893 (2023).

26. Deneault, J. R. et al. Toward autonomous additive manufacturing:
Bayesian optimizationon a3Dprinter.MRSBull.46, 566–575 (2021).

27. Campbell, S. I. et al. Outlook for artificial intelligence and machine
learning at the NSLS-II. Mach. Learn. Sci. Technol. 2, 1 (2021).

28. Leong, C. J. et al. An object-oriented framework to enable
workflow evolution across materials acceleration platforms.
Matter 5, 3124–3134 (2022).

29. Du, X. et al. Elucidating the full potential of OPVmaterials utilizing a
high-throughput robot-based platform andmachine learning. Joule
5, 495–506 (2021).

30. Coley, C. W. et al. A robotic platform for flow synthesis of organic
compounds informed by AI planning. Science 365, 6453 (2019).

31. Jiang, Y. et al. An artificial intelligence enabled chemical synthesis
robot for exploration and optimization of nanomaterials.Sci. Adv.8,
1–12 (2022).

32. Yoo, A. B., Jette, M. A. &Grondona,M. Slurm: Simple Linux utility for
resource management. Workshop Job Sched. Strateg. parallel Pro-
cess. 44, 60 (2003).

33. Nabrzyski, J., Schopf, J. M. & Weglarz, J. Grid Resource Manage-
ment: State of the Art and Future Trends. (Springer Science &
Business Media, 2012).

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 13

https://github.com/KIST-CSRC/Octopus
https://github.com/KIST-CSRC/Octopus
https://github.com/KIST-CSRC/Octopus
www.nature.com/naturecommunications

34. Vasel, K. The pandemic forced a massive remote-work experiment.
Now comes the hard part. CNN Business (2021).

35. Park, J. et al. Closed-loop optimization of nanoparticle synthesis
enabled by robotics and machine learning. Matter 6, 677–690
(2023).

36. Vogler, M. et al. Brokering between tenants for an international
materials acceleration platform. Matter 6, 2647–2665 (2023).

37. Canty, R. B. & Jensen, K. F. Sharing reproducible synthesis recipes.
Nat. Synth. 3, 428–429 (2024).

38. Rauschen, R., Guy, M., Hein, J. E. & Cronin, L. Universal chemical
programming language for robotic synthesis repeatability. Nat.
Synth. 3, 488–496 (2024).

39. Granda, J. M., Donina, L., Dragone, V., Long, D. L. & Cronin, L.
Controlling an organic synthesis robot with machine learning to
search for new reactivity. Nature 559, 377–381 (2018).

40. Volk, A. A. et al. AlphaFlow: autonomous discovery and optimiza-
tion ofmulti-step chemistry using a self-drivenfluidic lab guided by
reinforcement learning. Nat. Commun. 14, 1403 (2023).

41. Soldatov, M. A. et al. Self-driving laboratories for development of
new functional materials and optimizing known reactions. Nano-
materials 11, 619 (2021).

42. Rubab, S., Hassan, M. F., Mahmood, A. K. & Shah, S. N. M. Adopt-
ability study of bin-packing for scheduling jobs on volunteer grid
resources. In Procedia Computer Science 69, 2–12 (Elsevier
B.V., 2015).

43. MacLeod, B. P. et al. A self-driving laboratory advances the Pareto
front for material properties. Nat. Commun. 13, 995 (2022).

44. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241
(2020).

45. MacLeod, B. P. et al. Self-driving laboratory for accelerated dis-
covery of thin-film materials. Sci. Adv. 6, 1–8 (2020).

46. Putera, A. & Siahaan, U. Comparison Analysis of CPU Scheduling:
FCFS, SJF and Round Robin. Int. J. Eng. Dev. Res. 4, 124–132
(2016).

47. Hoon Yi, G. et al. MaTableGPT: GPT-based table data extractor from
materials science literature. Preprint at https://doi.org/10.48550/
arXiv.2406.05431 (2024).

48. Skibba, R. Virtual reality comes of age.Nature553, 402–403 (2018).
49. Matthews, D. Virtual-reality applications give science a new

dimension. Nature 557, 127–128 (2018).
50. Li, J., Tu, Y., Liu, R., Lu, Y. & Zhu, X. Toward “On‐Demand”materials

synthesis and scientific discovery through intelligent robots. Adv.
Sci. 7, 1901957 (2020).

51. Pells, R. Why scientists are delving into the virtual world. Nature
https://doi.org/10.1038/d41586-023-02688-1 (2023).

52. Wang, G. et al. Development of metaverse for intelligent health-
care. Nat. Mach. Intell. 4, 922–929 (2022).

53. Yoo, H. J. et al. Operation control system for task optimization and
job parallelization via a user-optimal scheduler. https://doi.org/10.
5281/zenodo.13990381 (2024).

Acknowledgements
This work was supported by the National Research Foundation of Korea
funded by the Ministry of Science and ICT [NRF-2022M3H4A7046278 &
RS-2024-00450102]. Nayeon Kim conceived the concept of image and
drew Supplementary Fig. S1.

Author contributions
S.S.H., D.K., and K.Y.L. conceived the idea and supervised the project.
H.J.Y. conceived the idea, designed OCTOPUS architecture, developed
user-optimal scheduler, and performed experiments. All authors con-
tributed to the result analysis and manuscript writing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-54067-7.

Correspondence and requests for materials should be addressed to
Kwan-Young Lee, Donghun Kim or Sang Soo Han.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-54067-7

Nature Communications | (2024) 15:9669 14

https://doi.org/10.48550/arXiv.2406.05431
https://doi.org/10.48550/arXiv.2406.05431
https://doi.org/10.1038/d41586-023-02688-1
https://doi.org/10.5281/zenodo.13990381
https://doi.org/10.5281/zenodo.13990381
https://doi.org/10.1038/s41467-024-54067-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	OCTOPUS: operation control system for task optimization and job parallelization via a user-optimal scheduler
	Results
	Terminology definition
	Architecture of OCTOPUS
	Job submission via the interface node and job scheduler of the master node
	Job executions in the master node
	Network protocol-based modularization
	Job parallelization to address the module overlap challenge
	Task optimization with masking table for preventing device overlaps
	The closed-packing schedule for optimizing module resources
	Performance test of the user-optimal scheduler
	Copilot of OCTOPUS

	Discussion
	Methods
	Virtual experiments for job parallelization leveraging device standby times
	Experiments for task optimization with masking table
	Experiments for benchmarking user-optimal scheduler

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

