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Machine learning-enabled exploration of the
electrochemical stability of real-scale metal-
lic nanoparticles

Kihoon Bang1,2, Doosun Hong1, Youngtae Park1, Donghun Kim 2 ,
Sang Soo Han 2 & Hyuck Mo Lee 1

Surface Pourbaix diagrams are critical to understanding the stability of
nanomaterials in electrochemical environments. Their construction based on
density functional theory is, however, prohibitively expensive for real-scale
systems, such as several nanometer-size nanoparticles (NPs). Herein, with the
aim of accelerating the accurate prediction of adsorption energies, we devel-
oped a bond-type embedded crystal graph convolutional neural network (BE-
CGCNN)model in which four bonding types were treated differently. Owing to
the enhanced accuracy of the bond-type embedding approach, we demon-
strate the construction of reliable Pourbaix diagrams for very large-size NPs
involving up to 6525 atoms (approximately 4.8 nm in diameter), which enables
the exploration of electrochemical stability over various NP sizes and shapes.
BE-CGCNN-based Pourbaix diagrams well reproduce the experimental obser-
vations with increasing NP size. This work suggests a method for accelerated
Pourbaix diagram construction for real-scale and arbitrarily shapedNPs, which
would significantly open up an avenue for electrochemical stability studies.

When nanomaterials are exposed to external environments such as
electric potentials or pH, their surfaces exhibit various phases because
the dominant adsorbate species may change1–4. The surface phases
of nanomaterials can significantly affect the functional properties
in energy storage5,6, sensing7,8, and catalysis1,2,9,10 applications. For
example, in catalysis, transition metals such as Ag and Ni can be active
components in catalysts for oxygen reduction reactions in alkaline
conditions and have thus been widely used for alkaline fuel cells11,12.
However, these elements cannot be utilized in acidic conditions due to
their undermined surface stability in acidic pH conditions. Moreover,
the catalytic reaction energetics are substantially affected by the sur-
face structure13,14. For example, in the water-splitting reaction, the
surface oxygen coverage is well known to alter the overall reaction
energetics and even change the rate-determining steps15. In these
regards, to accurately simulate nanomaterials, modeling proper and
realistic surface structures under given external conditions is critical.

In electrocatalysis, a surface Pourbaix diagram is themostpopular
tool to explore the surface structure and stability of catalytic
materials2,16–18 since it reveals the stable surface phases under each
applied potential and pH condition. Estimating the surface stability
based on Pourbaix diagrams has been widely used for various mate-
rials, including pure metals, oxides19, carbides20, and even nano-
particles (NPs)3,21. In addition to stability evaluations, Pourbaix
diagrams can be utilized to explore the adsorbate configurations
under certain reaction conditions in various catalysis models19,22.
Today, the computational construction of surface Pourbaix diagrams
is typically based on Gibbs free energy computations at the density
functional theory (DFT) level of several possible surfaces phases2,3,23–25.
Unfortunately, this computational process is prohibitively expensive,
as it requires numerous DFT calculations for a wide range of adsor-
bates and surface coverages, and has thus been limitedly applied to
relatively small-size NPs (mostly less than 100 noble metal atoms)26.

Received: 4 October 2022

Accepted: 10 May 2023

Check for updates

1Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
2Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. e-mail: donghun@kist.re.kr;
sangsoo@kist.re.kr; hmlee@kaist.ac.kr

Nature Communications |         (2023) 14:3004 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0003-0326-5381
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0002-7925-8105
http://orcid.org/0000-0003-4556-6692
http://orcid.org/0000-0003-4556-6692
http://orcid.org/0000-0003-4556-6692
http://orcid.org/0000-0003-4556-6692
http://orcid.org/0000-0003-4556-6692
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38758-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38758-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38758-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38758-1&domain=pdf
mailto:donghun@kist.re.kr
mailto:sangsoo@kist.re.kr
mailto:hmlee@kaist.ac.kr


Building Pourbaix diagrams for several nanometer-size NPs involving
at least thousands of atoms was considered practically impossible
within the current DFT computation frame and speed. This problem
leaves the large gaps between experiments and computations unre-
solved and limits our fundamental understanding of the electro-
chemical stability of real-scale NPs.

To overcome this problem,machine learning (ML) is a useful tool.
After building the database, training, and prediction could be done
with personal computers and the computation time is much faster
than those of quantum calculations. Not only a speed, but also an
accuracy can be achieved with substantial amount of training set27,28.
Many ML frameworks are used in various materials science fields to
predict material’s properties from given structures, such as Random
Forest Regression29–31, Gaussian Process Regression30, and XGBoost
Regression32. Among them, Crystal Graph Convolutional Neural Net-
work (CGCNN)33 hasmany advantages. At first, it can be applied to any
kind of material structures by constructing a graph from atomic
coordinates, even to NP structures34. Moreover, by convolution pro-
cedure of graph generated from atomic structures, it takes account
local atomic interaction between neighbored atoms which directly
influence property of materials.

In this work, we leverage a machine learning (ML) approach to
enable the construction of surface Pourbaix diagrams for very large-
sizeNPs. To accelerate the prediction of adsorption energies for awide
range of adsorbates and surface coverages, we develop a bond-type
embedded crystal graph convolutional neural network (BE-CGCNN) in
which four bonding types (metallic bond, covalent bond, chemisorp-
tion, and nonbonded interaction) are uniquely differentiated. BE-
CGCNNpredicts the adsorption energies for various surface coverages
muchmore accurately than the original CGCNN.Our unique treatment
of bond vectors is key to improving ML prediction accuracy and pro-
ducing reliable Pourbaix diagrams. Using this model, the Pourbaix
diagrams for Pt NPs under the competition between O and OH
adsorption are accurately produced. Explorations of ML-based Pour-
baix diagrams of NPs of various sizes and shapes reveal the origins of
the experimentally observed trends, such as the relative dominance of

O-covered phases over OH-covered phases for larger Pt NPs and
reduction of the Pt ion dissolution area for larger Pt NPs. Owing to the
accurate and fast ML predictions, we finally present the construction
of Pourbaix diagrams of several nanometer-size NPs involving up to
6525 Pt atoms (~4.8 nm indiameter), which is considered impossible to
obtain by DFT only. These demonstrations highlight an ML-enabled
tool for exploring the electrochemical stability of real-scale and arbi-
trarily shapedNPs,whichwould substantially narrow the gaps between
experiments and computations.

Results
Bond-type embedded CGCNN (BE-CGCNN)
Previous studies using the ML approach to predict surface adsorption
energies mostly focused on single adsorbates32,35–41. However, they
performed poorly in predicting adsorption energies for cases invol-
ving multiple adsorbates and were thus not successful in reflecting
surface coverage effects. In this regard, an ML model that can cover
various adsorbates and coveragesmust be developed. For high surface
coverage cases, adsorbates on NP surfaces are close enough that
several types of interactions can occur, including intermolecular and
intramolecular interactions. To reflect such complexity, we propose
the bond-type embedded CGCNN (BE-CGCNN) model in Fig. 1, in
which edge vectors are uniquely designed.

BE-CGCNN overall follows the schemes of the original CGCNN
approach, in particular, those for graph construction, node vector-
ization, and selection of convolution functions. For each NP and slab
structure, atoms and bonds are encoded into node vectors and edge
vectors to construct a graph of the corresponding structure. As shown
in Fig. 1b, for edge vectors (representing bonds), we classify them into
four types: covalent bond within an adsorbate (e.g., O-H), metallic
bond within an NP (e.g., Pt-Pt), chemisorption between an NP and an
adsorbate (e.g., Pt-O), and, lastly, nonbonded interaction between
different adsorbates (e.g., H…O), in which the edge vectors are enco-
ded in a one-hot manner with four categorized vectors. The last term
(nonbonded interaction) is only valid when the atomic distance is
larger than 1.25 Å. In the previous CGCNN and its modified versions,
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Fig. 1 | Description of the bond-type embedded CGCNN (BE-CGCNN) model.
a Schematic representation of the graph convolution neural network model to
predict the adsorption energy. b Representation of bond embedding. Each bond is
embedded into a bond vector by one-hot encoding of the bond type.

c Optimization of atom embedding features. Costs are compared as a function of
various feature combinations. Blue points/line denote the minimum value of each
feature combination. Here, GR, AR, EA, and PL indicate the group number, atomic
radius, electron affinity, and polarizability, respectively.
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long-distance interactions were not treated fairly. However, in many
cases, there could be strong nonbonded interactions, such as hydro-
gen bonds, between OH species, and these were treated as important
in our graph constructions. Note that the edge vectors are designed to
be distance-insensitive.

The processes of node vector construction and optimization are
basically identical to those of the original CGCNN. To select appro-
priate features for the node vector, we calculated the mean square
error of the adsorption energywith an increasing number of features,
as shown in Fig. 1c. Candidates for the features include elemental
properties available in the periodic table of elements as follows:
group number, period number, atomic number, radius, electro-
negativity, ionization energy, electron affinity, volume, atomic
weight, melting temperature, boiling temperature, density, Zeff,
polarizability, resistivity, capacity, number of valence electrons, and
number of d-electrons. The value ranges and categories are provided
in Supplementary Table S1. For cost efficiency, the best feature
combination set was fixedwith an increasing number of features. The
best result was obtained for the feature set comprising group num-
ber, atomic radius, and electron affinity. Because the adsorption of
adsorbates is closely related to the electronic interaction between
adsorbates and NPs, the model with selected features related to the
number of valence electrons (group number and atomic radius) and
the energy of valence electrons (electron affinity) likely shows the
best performance.

Adsorption energy dataset for various NP surface coverages
In this work, we aim to build surface Pourbaix diagrams of Pt NPs,
which are well-known materials in various catalytic applications. In
constructing surface Pourbaix diagram, a dataset of adsorption ener-
gies on catalyst surface is required. There are several databases con-
taining adsorption energy data inmaterials science and chemistryfield
such asOC202042 andOC202243, but they did not consider enough the
coverage of adsorbates and structures of NP-adsorbates, which are
critical for Pourbaix diagram constructions. Therefore, we developed
our own database by DFT calculations. The adsorption of O and OH
species on Pt NPs was calculated for training set construction.
Adsorption of O and OH on Pt13 and Pt55 NPs was included. Two NP
structures, cuboctahedron (Coh) and icosahedron (Ih), which are
known as the stable morphologies of NPs with 13 and 55 atoms, were
considered. NPs with a truncated octahedron (Toh) structure with 38
atoms were also included. Slabs with (100), (110), (111), and (211)
exposed surfaceswerealso included. The structuresof these PtNPs are
available in Supplementary Fig. S1. For each NP and slab structure,
adsorption configurations of O and OH up to 1 monolayer (ML) were
modeled. Here, 1 ML means that adsorbates are fully covered without
interacting between neighbored adsorbates. The number of adsor-
bates for 1 ML for each structure are provided in Table S3 in Supple-
mentary Information. OH was adsorbed on either bridge or top sites
andOwas adsorbed on bridge or fcc hollow sites, whichwere themost
stable adsorption sites on the Pt(111) slab. For each coverage below 1
ML, up to 5 random configurations where adsorbates are distributed
randomly including vertex, edge, and terrace site were modeled to
address the effect of configuration to adsorption energies. Config-
urations with O adsorption-only or OH adsorption-only were con-
sidered to reduce the complexity of dataset. The total adsorption
energy (4E½NP� Aads

� �
n�) and the adsorption energy per adsorbate

(4Eads ½NP� Aads

� �
n�) were computed by the following equations:

4E½NP� Aads

� �
n�= E NP� Aads

� �
n

h i
� E NP½ � � nE½A� ð1Þ

4Eads½NP� Aads

� �
n�=

4E½NP� Aads

� �
n�

n
ð2Þ

where E[NP-(Aads)n], E[NP], and E[A] are the total energies of the
structures of the NP including n adsorbates, the NP only, and adsor-
bate A only, respectively. A refers to an adsorbate, such as O and OH.

Unfortunately, neither the total adsorption energy
(4E½NP� Aads

� �
n�) nor the adsorption energy per adsorbate

(4Eads ½NP� Aads

� �
n�) is suitable for accurate ML training for the fol-

lowing reasons. For the former (the total adsorption energy), the data
range was estimated to be too large (>120 eV; Supplementary Figs. S2c
and S2d) because of the cases involving several tens of adsorbates, and
thus, the absolute errors of the ML models are also very large. On the
other hand, for the latter case (the adsorption energy per adsorbate),
the data range is much smaller (<3 eV; Supplementary Figs. S2a and
S2b), and the ML errors seemingly look small. However, in the end,
surface Pourbaix diagrams are fedwith total adsorption energy inputs,
and thus, the predicted values for many adsorbate cases (relatively
large surface coverage) would be very erroneous and misleading. To
overcome this limitation,we introduced adifferentmetric, namely, the
adsorption energy difference (44E½NP� Aads

� �
n�), which served as a

muchmore suitable form for accurate ML training and prediction and
could be computed as follows:

44E NP� Aads

� �
n

h i
=4E NP� Aads

� �
n

h i
� n4Eads½NP� Aads

� �
n� ð3Þ

4Eads½NP� Aads

� �
n� =

PM4Eads NP� Aads

� �
n

h i
M

ð4Þ

where ΔΔE[NP-(Aads)n] is the adsorption energy difference,
4Eads½NP� Aads

� �
n� is an averaged value of adsorption energies per

adsorbate at eachn, andM is the number of adsorption energy data for
each n and each adsorbate, and these M values are provided in Sup-
plementary Table S2. The value range of this metric (ΔΔE[NP–(Aads)n])
is much smaller (~25 eV; Supplementary Figs. S2e and S2f) than that of
the total adsorption energy (>120 eV); thus, the ML errors were also
estimated to be much smaller.

BE-CGCNN training results with bond-type embedding
In Fig. 2, we show the BE-CGCNNmodel training results obtained using
the dataset comprising 736 adsorption energy difference data points
(both O adsorption case and OH adsorption case), in which 80% of the
dataset was used for training and the remaining 20% was used for the
test. For both adsorbates, the BE-CGCNN with bond-type embedding
greatly outperforms the original CGCNN, exhibiting a mean absolute
error (MAE) of 0.33 eV for the O adsorbate and an MAE of 0.07 eV for
OH. These values are much smaller than those of 0.86 eV and 0.49 eV
for the O and OH cases from the original CGCNN model (‘without
bond-type embedding’ results in Fig. 2), proving the effectiveness of
bond-type embedding in our ML models. Note that these MAE values
are remarkably small given that the data range of the adsorption
energy difference (ΔΔE[NP-(Aads)n]) is as large as ~25 eV. The error
values of the original CGCNN are not sufficiently small to warrant the
reliable construction of Pourbaix diagrams, and thus, implementation
of BE-CGCNN with much-enhanced accuracy is required.

Different bond-type embeddings lead to different error levels, as
shown in Table 1. For each O adsorption and OH adsorption on Pt NPs,
the original CGCNN without bond-type differentiation exhibits the
worst accuracy. Upon the introduction of three bond types (covalent
bond, metallic bond, and chemisorption) into the bond vector
encoding, the error is significantly reduced to 0.44 eV and 0.30 eV for
each O and OH dataset. Finally, by adding a nonbonded interaction
term to the bond types, the ML model reaches even lower-level errors
of 0.33 eV and 0.07 eV, respectively. These successful error reductions
indicate that thenonbonded interaction is a critical termand shouldbe
treated as important, particularly for high surface coverage cases
where van der Waals interactions are present.
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Constructing Pt surface Pourbaix diagrams using BE-CGCNN
Now, using the well-trained BE-CGCNN model, we are ready to build
surface Pourbaix diagramswithout DFT inputs. Ourmodel systems are
Pt NPs whose surfaces are under the competition between O and OH
adsorption. The first validation process is to construct reliable Pour-
baix diagrams of Pt55(Ih) NPs using the BE-CGCNN model trained on
the data of smaller systems, including slabs and smaller NPs (Pt13 and
Pt38). In Fig. 3, the surface Pourbaix diagram of a Pt55 NP (Ih) con-
structed solely by the BE-CGCNN model is compared to the ground
truth diagram obtained by DFT computations. The DFT andML results
are observed to be very similar, exhibiting differences in the y-inter-
cepts of boundary lines of even less than 0.1 eV on average. In both
diagrams, as the pH and U (applied potential) increase, transitions
from bare Pt NPs to OH-covered Pt NPs and finally to O-covered Pt NPs
are observed. In addition, Pt dissolution regions are found at low pH
(~>3) and high U (~>0.7 V). This test reveals the feasibility of reliable
constructionof Pourbaix diagramsof larger-size PtNPs solelybasedon
BE-CGCNN.

Next, we expand the study of ML-based Pourbaix diagrams to Pt
NPs of various sizes (Pt55 and Pt147 NPs) or shapes (Coh and Ih), as
shown in Fig. 3. Here, the BE-CGCNNmodel was trained on the dataset
of slabs and relatively small NPs (Pt13, Pt38, and Pt55). In Figs. 3a–d, the
surface Pourbaix diagrams of the Pt55 (Ih) NP and Pt55 (Coh) NP are
shown. The diameter of Pt55 NPs is ~0.5 nm.Qualitatively, as the pH and
given potential U increase, the phase transition frombare Pt to theOH-
and O-adsorbed surface occurs. The DFT-based and ML-based pre-
dictions appear quantitatively very similar for both shapes. For
example, in the Ih shape cases, the phase boundaries between the bare
Pt NP and Pt-(OH)0.29ML appear at almost identical y-intercepts (0.52V
forDFT versus0.51 V forML).Other boundary lineswithin comparative
diagrams of Ih cases appear at very similar positions, with the differ-
ences in terms of the y-intercept positions being much <0.1 V on
average. The diagrams for Coh NP cases are more complicated due to

the appearanceofmanymore phases. Similar to Ih cases, theML-based
predictions overall also worked great for Coh cases, except for the
quantitatively erroneous description of the boundary line between Pt-
(O)0.67ML and Pt-(O)1ML (y intercept difference of ~0.24V).

We further explore larger-size NP systems, namely, Pt147 (Ih) and
Pt147 (Coh), as shown in Fig. 3e, f. The diameter of the Pt147 NPs is
~0.8 nm. For both Ih- and Coh-shaped NPs, Pt-(OH) phases are sub-
stantially destabilized over other phases of bare Pt and Pt-(O)44 in
comparison todiagramsof smaller PtNPs (e.g., Pt55) or Pt slab systems2

available in Supplementary Figs. S4 and S5. This observation is con-
sistent with the tendency of relatively strong OH adsorption on Pt
surfaces for smaller Pt NPs compared to bulkier NPs45.

A prominent difference between Pt147 (Ih) and Pt147 (Coh) is the
relative amount of the fully O-covered phase (Pt-(O)1ML). The Pt-(O)1ML

phase stands out for the Ih case, whereas this phase shrinks for the Coh
structures due to the appearance of partial O coverage phases, such as
Pt-(O)0.53ML. Reduction of the Pt-(O)1ML phase was also similarly found
for smaller Pt55 NPs (Coh), where partial O coverage phases (Pt-
(O)0.42ML, Pt-(O)0.56ML, Pt-(O)0.67ML) preferentially appear over the full
O coverage phase. This difference comes from the shape effect of the
NPs. Unlike the Ih structures comprising only (111) surface planes, Coh
NP structures have mixed surfaces of (111) and (100) planes. The
adsorption of O species on the Pt(100) surface is well known to be
stronger than that on the (111) surface due to the presence of more
dangling bonds46. As a result, for the Coh NP structures, partial O
phases (Pt-(O)<1ML) are likely to be stable when oxygen is dominantly
adsorbed on (100) surfaces compared to the full O phase (Pt-(O)1ML)
where oxygen is adsorbed on both (100) and (111). This phenomenon
would be unlikely for the Ih NP structures without (100) surfaces.

The BE-CGCNN model is not only applicable to highly symmetric
NPs suchas Ih andCoh, but also to asymmetricNPswhich couldbe also
synthesized in experimental condition47,48. To validate the perfor-
mance of BE-CGCNN model for the non-idealized NP shapes, surface
Pourbaix diagram of asymmetric NPs were built based on the predic-
tion of adsorption energy difference. For more realistic modeling, the
shapes of asymmetric NPs were generated using the heating-and-
quenching approach of Pt55 NPs in molecular dynamics (MD) simula-
tion of As a result, two different structures of asymmetric Pt55 NP
structures (AS1, AS2) could be obtained. The details of the structure
generation procedures are provided in Supplementary Fig. S6. In Fig.
S6, the surface Pourbaix diagrams of Pt55(AS1) and Pt55(AS2) are shown
and compared with DFT-computed diagrams. Because asymmetric NP
structures are not included in training set, the difference between BE-
CGCNN and DFT-based diagrams are larger than the difference for the
case of Pt55(Ih) or Pt55(Coh). Nevertheless, the same phases appear in

Table 1 | MAE values with the variations of bond-type
embedding

Bond embedding Test MAE (O DB)
[eV]

Test MAE (OH DB)
[eV]

Without bond-type embedding 0.86 0.49

Bond-type (C, M, CH) 0.44 0.30

Bond-type (C, M, CH, NB) 0.33 0.07

C covalent bond, M metallic bond, CH chemisorption, NB nonbonded interaction.
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both diagrams and the trend is very similar, which proves the effec-
tiveness of BE-CGCNN for non-idealized NP shapes.

Interestingly, the shape of diagrams of asymmetric NPs are quite
different from that of Pt55(Ih) despite the same size. The main differ-
ence is that the area of bare Pt phase is expanded for AS1 and AS2 NPs.
As the asymmetric NP passes throughmelting and quenching process,
the surface become smoothened, and thus the number of low-
coordinated surface atoms such as vertex and edge (typically stronger

binding sites) become lower. Therefore, the average adsorption
energy per adsorbate become weaker from −2.90 eV for OH and
−4.18 eV for O on Ih and CohNPs to −2.35 eV for OH and −3.61 eV for O
onAS1 andAS2NPs. This result adequately explains the expanded bare
Pt region in Pourbaix diagrams for asymmetric NPs.

Although we have thus far shown that BE-CGCNN model can pro-
duce surfacePourbaixdiagramswith fairly highaccuracy, it doesnot tell
whether or not the ML predicted results are trustworthy. To estimate
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themodel’s reliability, uncertainty quantification could be a useful tool.
By estimating uncertainty values forMLpredictions, themodel not only
provides a prediction value but also returns confidence intervals. There
are many available methods to measure uncertainty49–51, and among
them, we adopted Dropout Neural Network (Dropout NN) which is
directly applicable to our BE-CGCNN model with ease. It approximates
Bayesian models by enforcing dropout at the ML prediction stages. We
used a random dropout rate of 25% to each convolution layer before
fully connected neural network layers in the BE-CGCNN model. 1000
times of sampling was performed for each prediction, and the uncer-
tainty value can be obtained as a standard deviation (SD) of 1000 times
predictions from the committee of ML models.

This model with Dropout NN was trained with each O and OH DB,
and prediction result is shown in Fig. 4a. It slightly underperforms the
model without Dropout NN, as confirmed by the increasedMAE values
of 0.67 eV and 0.19 eV for each O and OH adsorbates. On the other
hand, the SD values are 0.017 eV and 0.015 eV for each O and OH DB,
respectively, which are very small values considering the very wide
range of adsorption energy difference in our dataset. This result indi-
cates that BE-CGCNN model is highly reliable. In addition, surface
Pourbaix diagramcanbebuilt basedon themodelwithDropoutNN, as
shown in the example of Pt55 (Coh) in Fig. 4b. In the diagram, themain
phase boundary lines were determined from the average of the ML
prediction values (average of 1000 sampled cases), while the uncer-
tainty of boundary lines were calculated by adding and subtracting of
SD values at each line.We observe in Fig. 4b that the Pourbaix diagram
of Pt55 (Coh) is qualitatively and quantitatively similar to the results
obtained without Dropout NN, since the prediction accuracy is not
much undermined. The uncertainty range of phase boundary lines
would reveal the reliability of the boundary lines. In the case of Pt55
(Coh) in Fig. 4b, the largest SDof phaseboundary line is only 0.117 V for
the phase boundary between Pt55-(O)0.56ML and Pt55-(O)0.67ML, and the
other boundary lines aremuchmore confident as confirmedby smaller
SD (0.031~0.066 V). The BE-CGCNN model with Dropout NN is highly
beneficial for predicting the uncertainty of the predicted phase
boundary lines of Pourbaix diagrams. Nonetheless, since the overall
trends of surface Pourbaix diagram are not affected much by the
inclusion of Dropout NN, the remaining studies were performed with
BE-CGCNN without Dropout NN.

Pourbaix diagrams for real-scale Pt NPs
The NPs explored thus far are NPs involving up to 147 atoms. This size
corresponds to only 0.8 nm in diameter, which is unfortunately far

from the real scale. Typically, the diameters of experimentally syn-
thesized NPs are over 3–4 nm, which involves thousands of atoms.
Using BE-CGCNN, we demonstrate the construction of Pourbaix
diagrams of real-scale Pt NPs, including Pt561 (Coh), Pt3871 (Coh), and
Pt6535 (Coh) NPs (~2.8, 3.9, and 4.8 nm in diameter), in Fig. 5a–c. Since
these diagrams are for several nanometer-size Pt NPs, we can now
compare the results with the available experimental reports. For
example, there are studies reporting themeasuredonset potentials for
surface oxide (or fully O-covered phase) generation on Pt NPs,
including 0.96 V on 1.2 nm-size NPs from Merte et al.52 and 0.9–1.15 V
on 4.0 nm-size NPs fromMom et al.53. These values are marked on the
Pourbaix diagrams in Fig. 5a, b and are found near the boundary lines
of Pt-(O)1ML in each diagram. Such quantitative agreement well sup-
ports that the constructed Pourbaix diagrams are highly reliable and
that the size dependences are greatly reflected.

As the NP size increases, the OH-covered phases are observed to
be reduced compared to the O-covered phase. This is consistent with
the experimental report that the OH surface coverage decreases with
increasing NP size44. The Pourbaix diagrams asymptotically converge
above the size of 3871 atoms. The converged case can be compared to
the Pourbaix diagram of the Pt(111) slab system, available in Supple-
mentary Fig. S5: the compositions of the O-covered phases are quite
different, whereas those of the bare Pt phases and OH-covered phases
are very similar. This difference arises because the Coh-shaped NPs
have (100) terraces, unlike the Pt(111) slabs.

The increasing O- to OH-covered phase ratio with increasing NP
size can be understood in terms of the relative adsorption strength of
O and OH species. Figure 5d compares the adsorption energies per
adsorbate of the fully O-covered (Pt-(O)1ML) and OH-covered (Pt-
(OH)1ML) phases, and their difference becomes larger with increasing
NP size, which is consistent with the shrunken OH phases for larger
NPs. The NP size dependence of the adsorption energies can be ade-
quately explained by the relative adsorption strength on vertex sites,
edge sites, and terrace sites. Taking Pt55 (Coh) NPs as an example, the
adsorption of OH on a vertex site is 0.68 eV stronger than that on a
terrace site, whereas the adsorptionofOon a vertex site is only 0.27 eV
stronger than that on a terrace site. The smaller the Pt NPs become, the
larger the ratio of vertex and edge sites to terrace atom sites becomes,
and thus, the adsorption energy difference between O and OH species
(Eads, O 1ML – Eads, OH 1ML in Fig. 5d) is gradually reduced. These trends
are clearly presented in Fig. 5d.

In addition to the O- to OH-covered phase ratio, the Pt dissolution
phase is also an interesting spot to focus on. As the NP size increases,
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the Pt dissolution phases shrink. The Pt dissolution area is closely
related to the stability of NPs operating in electrochemical catalysis. For
example, Pt NPs are one of the most widely used catalysts for the oxy-
gen reduction reaction (ORR) at the cathode of proton exchange
membrane fuel cells (PEMFCs). However, the operating conditions of
the PEMFC cathode are approximately an applied potential of 0.8 V and
a pH of 154. This point is inside the Pt dissolution domain for relatively
small Pt NPs (Pt55 and Pt147), as shown in Fig. 3, whereas it resides
outside of the Pt dissolution region for larger Pt NPs (Pt561, Pt3871, and
Pt6525), as shown in Fig. 5a−c. Very interestingly, an experimental
report55 confirmed that Pt NPs with diameters smaller than 2.0 nmwere
easily dissolved, and thus, the specific electrochemical surface area was
greatly decreased over potential cycling compared to larger NPs.

We importantly note that the experimental operating conditions
(0.8 V, pH= 1) are near the fully O-covered phase, which is a surface Pt
oxide. Although thisposition is outsideof the Pt dissolution region, the
surface Pt oxide layer induces nonequilibrium transient dissolution of
Pt56–58. In these situations, Pt dissolution may occur even for large-size
Pt NPs, and the ORR performance of the catalyst would be degraded
under long-term working conditions. This indicates that to fully
understand the electrochemical stability of NP-based catalysts, taking
into account kinetic factors, not only the surface Pourbaix diagram in
which only equilibrium states are considered, is also important.

The construction of Pourbaix diagrams of several nanometer-size
NPs was enabled by the fast prediction speed of BE-CGCNN compared
to DFT. Thus, discussing the computing time taken for the task of
predicting the adsorption energy of each structure by the BE-CGCNN
and DFT methods should be worthwhile. For Pt147 NPs, the total
computing time (both training and prediction) for BE-CGCNN was
estimated to be ~150 seconds based on a personal computer imple-
mented with an NVIDIA GPU of GTX 2070. In contrast, the computing
time for the same taskwas ~90 hours (2160 times longer than in the BE-
CGCNN case) based on a high-performance computing node imple-
mented with a 2.3 GHz 20-core CPU, as shown in Fig. 6. Because DFT
theory follows the computational scaling of O(N3), where N is the
number of electrons59,60, the computing time differences between BE-
CGCNN and DFT will be large for NPs involving thousands of atoms.
Following the extrapolation lines based on O(N3) for DFT, for the
example of the NP of 6535 Pt atoms, the computing timeof DFTwill be
2200 days, which is ~1.9 × 108 times longer than that in the BE-
CGCNN case.

Discussion
In summary, we solved the problem that the construction of Pourbaix
diagrams of real-scale NPs is not practically possible today due to the
extreme DFT cost issue. As a first step to solve this problem, we
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Fig. 5 | Pourbaix diagrams of real-scale (several nanometer-size) Pt NPs.
a Pourbaix diagram of Pt561 (Coh). b Pourbaix diagram of Pt3871 (Coh). c Pourbaix
diagramof Pt6525 (Coh),which corresponds to ~4.8 nm indiameter. Thewhite, blue,
orange, and red shaded area represent bare Pt NPs, OH-covered, O-covered, and Pt
dissolution phases, respectively. As the color became darker, more adsorbates are
adsorbed. The red and gray spheres of the inset atomic model represent oxygen

and platinum atoms, respectively. dDifference in the adsorption energies between
the fully O-covered phase (Pt-(O)1ML) and fully OH-covered phase (Pt-(OH)1ML) as a
function of NP size. Eads represents the adsorption energy per adsorbate. The 2nd y
axis shows the ratio of the number of vertex and edge atoms to the number of
terrace atoms as a function of NP size.
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developed BE-CGCNN, in which four bonding types were uniquely
encoded. BE-CGCNN substantially outperforms the original CGCNN in
predicting adsorption energies over a wide range of NP surface cov-
erages. Using BE-CGCNN, we demonstrate the construction of Pour-
baix diagrams of Pt NPs involving up to 6535 atoms (~4.8 nm in
diameter). Exploring Pt NPs of various sizes and shapes, we find that
the ML-based Pourbaix diagrams well reproduce experimental obser-
vations, such as an increasing O- to OH-covered phase ratio and a
decreasing Pt dissolution area as the NP size increases. By presenting
surface Pourbaix diagrams of very large-size NPs, we conclude that BE-
CGCNN can serve as a strong tool to enable the stability study of real-
scale and arbitrarily shaped NPs in electrochemical environments,
which is not possible in the conventional DFT scheme. Currently, our
model is limited to specific systems as our dataset is only composed of
Pt-O or Pt-OH structures. The model will not function well for other
adsorbates (e.g., OOH, CO) or for different composition of NPs (e.g.,
Pt3Ni, Pt3Fe). However, if we precisely prepare a training set for the
system we interested in and follow the similar protocol, BE-CGCNN
model would be effective for the expanded material spaces, which
remains as a future research.

Methods
DFT computation
To calculate the adsorption energies for construction of surface
Pourbaix diagram, we performed spin-polarized DFT calculations
using the Vienna Ab initio Simulation Package (VASP)61,62 with the
projector-augmented-wave pseudopotentials63 and the revised
Perdew-Burke-Ernzerhoff (RPBE)64,65 gradient approximation was used
for the exchange-correlation functional. To treat van der Waals inter-
actions between adsorbates, Grimme’s DFT-D3method66 was adopted.
Another function of local-density approximation (LDA) was also tes-
ted, and its results are compared to the case with RPBE+D3 in Fig. S8.
LDAwas found to generally overestimate adsorption energies, causing
unrealistic Pourbaix diagrams. In contrast, RPBE+D3 is known to pro-
duce accurate adsorption energies with reasonable computational
cost compared to other functionals67,68. The plane-wave cutoff was set
to 520 eV, and the convergence criteria for electronic structure and

geometry optimization was 3 × 10−5 eV and 0.05 eV/Å. For each NP and
NP-adsorbates structures, a vacuum spacing of 10 Å was used to pre-
vent interactions between NPs.

Gibbs free energy corrections
For Pourbaix diagram construction, Gibbs free energies need to be
computed, which involves correction terms of the entropy (ΔS), zero
point energy (ΔZPE), applied potential (U), and pH. Within the com-
putational hydrogen electrode scheme, theGibbs free energies of each
NP-adsorbate structure were computed from the following equations.
Note that at a certain surface coverage (or a certain number of
adsorbates), the lowest adsorption energy ð4E½NP� Aads

� �
nÞ case was

selected for Gibbs free energy computations.

ΔG NP� Oð Þn
� �

= ΔE NP� Oð Þn
� �

+nðE O½ � � E H2O
� �� E H2

� �� �
� 2 eU +0:0592pHð Þ+ΔZPE O½ � � TΔS½O�Þ ð5Þ

ΔG NP� OHð Þn
� �

=ΔE NP� OHð Þn
� �

+nðE OH½ � � E H2O
� �� 1

2
E H2

� �� �

� eU +0:0592pHð Þ+ΔZPE OH½ � � TΔS½OH�Þ
ð6Þ

where ΔS was approximated from the loss of entropy from the gas
phase molecule upon binding to the surface. The NP-adsorbate
structures with the lowest (most stable) Gibbs free energy are shown
on the surface Pourbaix diagram for given U and pH values.

Computation of dissolution phases in Pourbaix diagrams
Wedefined the dissolutionphase of a Ptn NP aswhenonemonolayer of
the Ptn NP shell dissolves into Pt ions. The Gibbs free energy of the
dissolution phase (ΔG[Ptn,diss]) can be computed as follows:69

ΔG Ptn,diss
� �

=G Ptm
� �� G Ptn

� �
+nshell G Ptbulk

� �� 2e U � Udiss,bulk

� �� �
ð7Þ

wherenshell is the number of atoms inonemonolayer of the PtnNP,m is
the number of atoms in dissolved NPs (i.e.,m+nshell = n),Udiss,bulk is the
dissolution potential of bulk Pt, and G[Ptn] is the Gibbs energy of
the Ptn NP.

As shown in the equation, we need the Gibbs free energy of
NPs (G[Ptn]) to obtain the Gibbs free energy of the dissolution phase
(ΔG[Ptn,diss]). It can be obtained from DFT calculations for small-size
NPs; however, the computation cost would be very high for
large-size NPs involving hundreds of metallic atoms. To overcome this
problem, we calculated the energy of Pt NPs by the classical forcefield.
Here, we applied the second nearest-neighbor modified embedded-
atom method (2NN-MEAM) of J.–S. Kim et al.70. As shown in
Supplementary Fig. S3, the energies calculated by the 2NN-MEAM
forcefield are ~0.3–0.8 eV larger than the DFT calculated energies;
however, the trends appear to be very similar. Because the relative
energy, not the absolute energy, betweenNPs is important to calculate
the dissolution phase, 2NN-MEAM could be a substitute for DFT. Also,
in the work of evaluation of forcefield for Pt71, MEAM showed quite
good performance even for NP structures. Thus, we used the 2NN-
MEAM forcefield energy for the computation of the Gibbs free energy
of the dissolution phase.

BE-CGCNN model development
In the BE-CGCNN model, for the slab structure and each NP structure,
atoms andbondswithinNPswere encoded into node vectors and edge
vectors to construct a graph of the corresponding structures. The
node vector construction processes are basically the same as those of
the original CGCNN. The elemental properties are available in the
periodic table of elementswere used as candidate features, such as the
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group number, period number, and electronegativity. The value ran-
ges and categories are provided in Supplementary Table S1. In con-
trast, the edge vectors were uniquely designed. Following the
previously reported slab graph convolutional neural network (SGCNN)
work72, the edge vectors were intentionally set to be distance-
insensitive. As a result, the connectivity information required as an
ML input is whether arbitrary atom pairs are connected (yes or no)
instead of their distance values. In this scheme, we no longer need fully
DFT-relaxed structures as ML inputs. The additional key modification
for edge vectors, which is unique in this work, is that four bonding
types were treated differently. These four bonding types include
covalent bonds within adsorbates (e.g., O-H), metallic bonds within
NPs (e.g., Pt-Pt), chemisorptionbetween theNP surfaceand adsorbates
(e.g., Pt-O), and finally nonbonded interaction between neighboring
adsorbates (e.g., O···Hwith a distance of over 1.25 Å). The treatments of
these four bonding types in edge vectors are well described in Fig. 1
and related explanations.

The constructed graphs were followed by several convolutional
layers. For each convolutional layer, each node (atom vector) was
updated based on the following convolution functions:

zti,jð Þ = ν
t
i � νtj � u i,jð Þ ð8Þ

νt + 1
i = νt

i +
X
j

σðzti,jð ÞW
t
f +b

t
f Þ � gðzti,jð ÞW

t
s +b

t
sÞ ð9Þ

where vectors v and u are node and edge vectors, subscripts i and j
denote neighboring atoms, and superscript t denotes the number of
convolutional layers. The operation ⊕ denotes concatenation, ⊙
denotes elementwise multiplication, σ denotes the sigmoid function,
and g is the rectified linear unit (ReLU) function. The pooling process
after convolutions was performed by normalized summation of con-
volutionized atom vectors. The pooled vectorwasfinally related to the
adsorption energy term (the final output) via fully connected neural
networks (FCNs). The cost function of model was set to L2 loss with L2

regularization. The optimized hyperparameter results are as follows:
32 batch size, 1000 epochs, a 0.001 learning rate, 5 convolutional
layers, and 2 FCN hidden layers with 25 nodes. Dropout73 and L2 reg-
ularization were applied to overcome overfitting. The dropout prop-
erty and L2 regularization coefficients were 0.3 and 0.01, respectively.
We trained the model for 1000 epochs and the parameters where the
cost of validation set is the lowest were selected, as shown in Fig. S12.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Related data are available at https://github.com/kihoon-bang/GCNN_
bond_embedding, or from the corresponding authors on request.

Code availability
The implemented ML model code is available at https://github.com/
kihoon-bang/GCNN_bond_embedding74, or from the corresponding
authors on request.
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