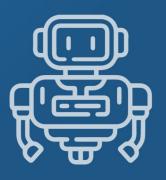
기술동힝

소재 신(新)연구방법론

KISTEP 성장동력사업센터 정두엽·조유진



Contents

제1장	개요 ······ 1
제2장	기술동향 5
제3장	산업동향 19
제4장	정책동향 26
제5장	정부 R&D 투자동향31
제6장	결론 35

제1장 개요

1.1 배경 및 필요성

- ◎ 우리나라에서는 소재 개발연구에 ICT 기술을 활용하는 방식을 일컫는 용어로 "소재 신연구방법론"을 사용하고 관련 기술 개발을 위해 노력해왔음
 - 소재 개발에는 장기적(10~20년) 대규모의 투자가 필요하다는 것이 연구자들의 공통적 의견이며, 실제로 상용화에 성공한 소재의 사례들도 이에 상응함
 - 이러한 투입의 어려움에도 불구하고 다행히 소재 개발은 원재료의 고부가가치화가 이뤄지며, 기업 간 높은 경로의존성으로 인해 시장 선점에도 유리



[그림 1] 소재 예시별 개발에서 적용까지의 소요 시간1)

- 미래 사회에서 소재는 하드웨어적 요소를 차지하기에 다양한 분야와 장소에서 이의 신규성, 원천성, 극한성이 더욱 요구될 것임
 - 경험 의존적 방법을 계속하여 사용할 시, 이러한 요구 조건들을 만족하는 소재를 개발하려면 더욱 많은 시간과 자금력이 필요하다는 결론에 이름

¹⁾ Cyrus Wadia(2012.06.19.), "The Materials Genome Initiative", TechConnect World 2012

- 이러한 문제 해결을 위해 공감대를 형성한 주요국(캐나다, 미국, 영국 등)들은 소재 개발을 "가속화"를 목적으로 디지털 전환 및 스마트 실험실 구축 관련 투자를 최근 시작함
- 따라서 이런 소재 개발 가속화를 위한 세계적 흐름에 지금 바로 함께하지 않는다면, 미래 사회 구현에 사용될 소재 개발 및 시장 확보에 치명적 어려움이 발생할 것으로 예측됨
- ◎ ICT 기술의 급속 발전과 코로나-19 판데믹의 영향으로 全 사회적인 비대면・ 디지털 전환은 피할 수 없는 흐름이며, 이러한 현상은 소재 개발연구에서도 마찬가지
 - 4차 산업혁명 시대의 대표적 ICT 기술들인 D(데이터).N(네트워크).A(인공지능, AI)가 他 과학기술 및 산업영역으로 확산·변화시키고 있음
 - 이러한 사회적 혁신을 "디지털 전환(digital transformation, DX)"이라고 부르며, 기반 기술인 D.N.A의 발전은 디지털 전환을 더욱 가속화 할 전망
 - 최근 코로나-19의 전 세계적 대유행 영향은 인류 생활 전반의 비대면 디지털 전환을 위한 기폭제가 되었음
 - 디지털 전환을 위한 기반 기술들은 이미 상당한 수준이었으나, 이를 현장에 적용하여 비대면 환경을 실현하기 위한 노력이 불필요했었다고 볼 수 있음
 - 코로나-19 이외에도 다른 감염병, 기후변화 등 자연재해로 인한 불확실성의 크기와 빈도 또한 시간이 갈수록 증가할 것으로 보임

국가	Google Hangouts	Zoom Meetings	Microsoft Teams
미국	30	14	11
영국	24	20	13
프랑스	23	22	16

〈표 1〉 코로나-19 이후 화상회의 앱 다운로드 횟수 증가2〉

(※ '20년 3월 셋째 주 다운로드 횟수가 '19년 4분기 주간 평균의 몇 배인지 계산한 수치)

11

17

- 소재 개발이 이루어지는 실험실도 다수의 연구자가 모여 일하는 환경이 대부분이기에 이러한 불확실성 문제와 디지털 전환을 위한 노력을 피할 수 없음
 - 특히 단순 "물리적" 조립이나 제조와 달리, 소재 개발의 경우 "화학적" 반응에 기반한 경우가 많으므로 공정에서 "연속성"을 요구하는 경우가 많음

15

독일

²⁾ 과기정통부(2021.03.), 「2022년도 국가연구개발 투자방향 및 기준」

- 따라서 감염병 등의 이유로 실험실에 사람의 개·출입이 불가하여 소재 공정이 단절될 시, 그로 인한 경제·시간적 매몰 비용이 필수적으로 발생
- ◎ 이에 본고에서는 소재 신연구방법론 관련 국내·외의 기술·산업·정책 동향 분석 및 세부 기술 분류별 정부 R&D 투자동향 파악 등을 통해 시사점을 도출하고자 함

1.2 기술의 정의 및 범위3)

- (정의) 소재 신연구방법론은 ICT(SW 및 HW) 기술을 활용한 소재 정보기술, 계산재료과학, 조합실험법을 통틀어 일컫는 기술 분야를 의미
- (범위) 정의에서 소개한 세부 기술 분류별로 기술의 범위를 아래와 같이 설명
 - 소재 정보기술(데이터 분야)
 - 소재를 물리·화학적 종류 또는 응용 분야에 따라 체계적으로 분류하는 기술
 - 각 데이터베이스의 특성에 맞는 소재 데이터 체계를 확립하여 저장하는 DB를 구축 및 관리하는 기술
 - 저장된 데이터를 정량적·정성적 기준에 의해 검색하는 기술 등
 - 계산재료과학(인공지능 및 알고리즘 활용 분야)
 - 컴퓨터를 이용하여 소재 정보를 바탕으로 그것의 물성을 빠르게 예측하는 기술
 - 위와는 반대로 소재 물성으로부터 그것의 정보(구조·조성)를 예측하는 역설계 기술, 즉소재 개발의 시행착오를 최소화하기 위한 효율적 신소재 개발기술
 - 조합실험법(소재 개발 실험 자동·자율화 분야)
 - 소재 설계에 있어 노동력에 기반한 시행착오적 실험이 아닌, 물질 혹은 공정조건의 조합식 라이브러리를 활용한 고속 대량 실험법을 활용하여 소재개발과 분석 효율을 높여 소재 개발 속도를 가속화하는 기술

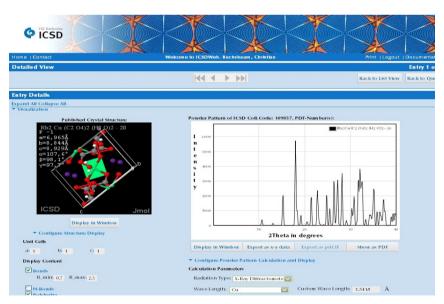
³⁾ 본고에서 사용된 소재 신연구방법론의 정의 및 기술 범위는 "한민규 외(2014.08.), 「창의소재 디스커버리 사업 예비타당성 조사보고서」, 한국과학기술기획평가원"에 처음 제시되었던 정의 및 기술 범위를 최근의 기술 발전 흐름에 따라 보완한 내용임을 명시함.

- 단순 자동화(automation)를 넘어 데이터·AI·로봇공학 등의 융합을 통해 연구자의 개입을 최소화하여 신소재 탐색·설계 \rightarrow 합성 \rightarrow 결과 분석·환류까지 자율적(autonomous) 수행이 가능한 스마트 재료연구실 기술

제2장 기술동향

2.1 소재 정보기술

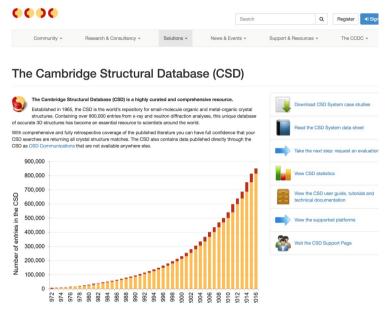
- ◎ (유럽) 유럽 국가들은 현재 가장 큰 규모의 구조정보 데이터베이스를 구축하고 주기적으로 업데이트하고 있음
 - (ICSD) ICSD (Inorganic Crystal Structure Database)는 독일 FIZ Karlsruhe 기관 주도하에 수집된 세계 최대규모의 무기결정구조 데이터베이스
 - 단원소 물질, 광물, 금속, 화합물 등 존재 가능한 모든 무기재료를 정의하고, 구조 정보 (좌표, 공간군, Wyckoff 순서 등)의 데이터를 축적
 - 2021년 11월 기준, 약 250,000여 개의 소재가 등록되어 있으며, 매년 4,000여 개의 새로운 소재들과 관련 정보들이 추가



[그림 2] ICSD (https://icsd.fiz-karlsruhe.de/search/)

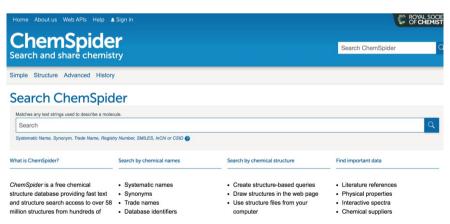
• (CSD) CSD (Cambridge Structural Database)는 영국 캠브리지 결정학 데이터 센터 (Cambridge Crystallography Data Center)의 주도하에 수집된 세계 최대규모의 유기물 구조 데이터베이스

- 주로 작은 유기물 분자들이나 또는 금속-유기물 화합물에 대한 구조정보를 축적해 두고 있으며, 현재 1백만여 개에 달하는 소재들이 등록



[그림 3] CSD (https://www.ccdc.cam.ac.uk/solutions/csd-system/components/csd/)

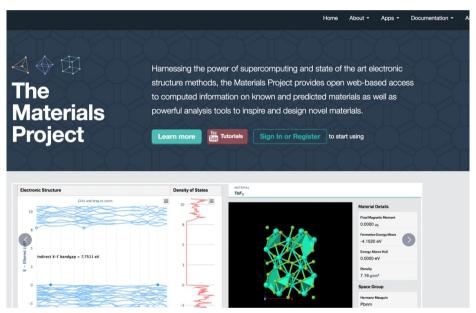
- (Chem Spider) Chem Spider 데이터베이스는 영국왕립화학회(RSC) 주도하에 화학구조의 이용 가능한 정보원과 이와 관련된 정보를 하나의 검색 저장소에 종합하고 색인을 할 목적으로 개발
 - 총 272개 데이터원으로부터 1억 1,400만 개의 화학구조들을 저장하고 있음



[그림 4] Chem Spider (http://www.chemspider.com/)

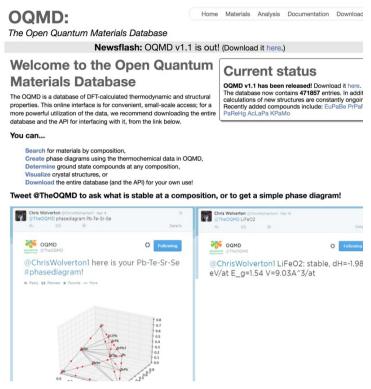
(기타) 이외에도 유럽 기관들을 주축으로 CALPHAD database (금속 열역학 상태도),
 Computational Materials Repository (재료 물성, 문헌값), NoMaD (재료 물성) 등
 DB 구축

- (미국) 상기 ICSD, CSD, Chem Spider 등에 구축된 구조정보 데이터베이스를 기반으로, 다양한 소재 물성 정보 데이터베이스(예: 열역학 성질, 전기/자기/ 기계적 성질 등)가 미국 주도로 구축
 - (Materials Project) Materials Project는 미국 로렌스 버클리 국립연구소 (Lawrence Berkeley National Laboratory) 소속 Kristin Persson 교수팀의 주도하에, 무기재료 약 700,000여 개를 대상으로 다양한 소재 기초물성을 구축
 - 주로 저장된 성질은 열역학 성질(생성에너지 등), 자기적 성질(자기 모멘트 크기 등), 전기적 성질(밴드 다이어그램, density-of-states (DOS) 등), 기계적 성질(체적 탄성율, 전단 탄성율 등)이 있음



[그림 5] Materials Project (https://materialsproject.org/)

- (OQMD) OQMD (Open Quantum Materials Database)는 미국 노스웨스턴 대학 Chris Wolverton 교수팀의 주도하에, DFT 총에너지 계산데이터 470,000여 개가 구축
 - 해당 플랫폼 환경에서는 계산된 총 에너지를 기반으로 재료의 생성에너지, 상태도와 같은 핵심적인 열역학 성질을 제공함
 - 본 DB는 합금 촉매, 리튬 이온 배터리, 고효율 나노구조 열전소자 등 분야의 재료를 발굴하는 데 널리 활용

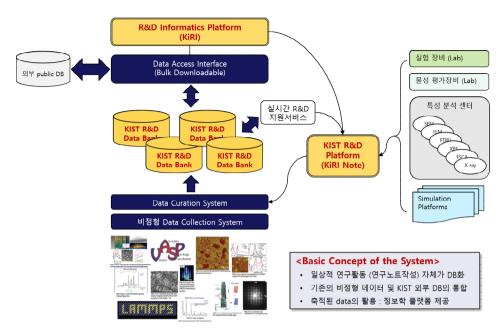


[그림 6] OQMD (http://oqmd.org/)

- (Materials Data Repository) 미국 NIST (National Institute of Standards and Technology)는 광범위한 재료 연구자 커뮤니티에서 데이터 공유 및 재사용을 촉진하기 위해서 재료과학 데이터 저장소(Materials Data Repository)를 구축
 - 앞서 소개된 Materials Project, OQMD 등의 DB는 특정 재료 물성의 계산데이터 값을 저장하였다면, 본 DB에는 실험/계산 구분 없이 모든 사용 가능한 데이터(주로 문헌자료기반)를 축적
 - 데이터 제공기관, 재료의 물성/합성/공정법 등의 데이터를 종류별로 검색 가능

[그림 7] NIST Materials Resource Registry (https://materials.registry.nist.gov/)

- (기타) 이외에도 AFLOWLIB (열역학, 전기, 기계적 물성), American Mineralogist (광물구조정보), CatApp (촉매 흡착에너지, 활성화에너지), CINDAS High Performance Alloy Database (항공우주 재료의 열 안정성 및 기계적 강도), DOE Hydrogen Storage Materials Database (수소저장 물질의 저장용량), Harvard Clean Energy Project (태양전지용 유기물 소재 물성), Thermoelectrics Design Lab (열전소자 성능변수) 등 많은 소재 물성 데이터베이스들이 미국 기관들을 주축으로 구축
- ◎ (한국) 분야별 소재정보은행과 표준참조물질 DB가 과거 구축되었으며, 최근에는 DB 기반의 연구개발 환경 제공을 위해 출연연 중심으로 노력 중
 - (소재정보은행) 소재종합솔루션센터에서 구축한 소재정보 데이터베이스가 있으며, 분야별 소재정보은행에서 특화된 소재물성 데이터를 제공함
 - (금속소재) 한국재료연구원 중심으로 철강소재, 알루미늄합금, 마그네슘합금, 분말소재 (철계, 초경), 구리소재 등에 대하여 115,532건의 수집 및 가공 데이터와 81,592건의 생성 데이터를 제공
 - (화학소재) 한국화학연구원을 중심으로 플라스틱, 고마 엘라스토머의 고분자 소재, 첨가제, 필름, 복합재료, 정밀화학소재 등에 대하여 529,979건의 수집 및 가공 데이터와 41,329건의 생성 데이터를 제공
 - (세라믹소재) 한국세라믹연구원을 중심으로 유전/압전소재, 반도체/도전체, 에너지소재, 유리, 형광체, 벌크제, 내열소재 등에 대하여 150,144건의 수집 및 가공 데이터와 30,694건의 생성 데이터를 제공
 - (표준참조물질 DB) 국가참조표준센터에서 금속 3,235건, 재료 375건의 참조표준 데이터를 제공함
 - 2017년부터 KIST에서는 데이터 기반의 연구개발 환경을 제공하기 위해 R&D 빅데이터 및 정보학 기술을 이용할 수 있는 연구개발 플랫폼 구축사업(KIST Research Informatics Project)을 진행 중
 - 본 플랫폼은 일상적 연구 활동의 기록 자체가 DB화될 수 있는 시스템, 기존의 비정형 데이터 수집 가공을 통한 다양한 R&D 지원 서비스 개발, 원내·외 DB를 연동한 빅데이터 기반의 인포매틱스 플랫폼의 구축 제공을 지향



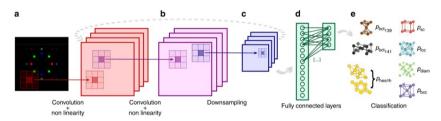
[그림 8] KIST 데이터 기반 R&D 플랫폼의 구성도

- 한국화학연구원에서는 화학플랫폼연구본부를 중심으로 화학데이터의 플랫폼화 작업을 진행 중
 - 이 사업을 통해 기존에 연구노트 및 아날로그 연구데이터를 전산화하며 연구데이터를 차후 활용 가능한 형태의 DB로 발전시키고 있음
- 과학기술정보통신부의 나노소재 기술개발사업의 내역사업으로 소재 연구데이터 플랫폼 구축 사업을 추진하여 기존 KISTI 보유 DB(204만건의 소재 데이터) 등과 연계 모색 중
 - 총괄(KISTI), 에너지환경소재(KIST), 스마트IT소재(표준연), 안전(구조)소재(재료연) 등 응용분야별로 데이터 센터 구축을 위한 세부과제 지원

2.2 계산재료과학

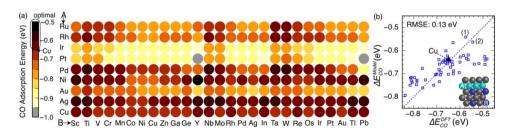
- (순방향 설계) 소재 정보로부터 물성을 예측하는 방식은 여전히 연구자가 원하는 물성이 나올 때까지 소재 정보를 바꿔보면서 물성을 예측해야 하는 에디소니안(Edisonian) 소재 설계 방식의 한계점 지님
- (역설계) 물성을 입력정보로 하고 이때 그 물성을 갖는 소재 정보를 예측하는 역설계 기술은 최근 AI 기술의 발달로 인해 급속 성장하고 있으며, 기존 에디소니안 접근방식에서 탈피한 새로운 소재 설계 패러다임 제공 가능
- ◎ (순방향 설계) 수집된 소재 정보로부터 물성 예측, 결정구조 분류, 다양한 화학 반응을 위한 촉매개발. 금속 소재 개발 및 가속화 등에 AI・알고리즘을 활용 중

- (구조-물성 예측) MIT의 Jeffrey C. Grossman 교수팀은 소재의 벌크상태 물성 예측에 특화된 crystal graph convolutional neural network (CGCNN) 인공지능 알고리즘을 개발⁴⁾
 - CGCNN 모델은 벌크 생성에너지, 밴드갭, 페르미 에너지, 체적 및 전단 탄성율, 포아송 비율 등을 매우 훌륭하게 예측
- (결정구조 분류) 독일 Fritz-Haber 연구소 Matthis Scheffler 교수팀은 소재의 회절 패턴 분석데이터를 기반으로 공간군(space group)을 분류하는 문제를 AI 기반으로 자동화⁵⁾
 - 개발된 모델은 결함이 많이 존재하는 소재의 경우에도 분류 정확도가 거의 훼손되지 않음을 보여, 학계나 산업계에서 활용 가치가 매우 클 것으로 전망



[그림 9] 독일 Fritz-Haber 연구소의 결정구조 분류 모델 도식도

- (CO₂ 전기환원 촉매개발) 미국 버지니아 공과대학 Hongliang Xin 교수팀은 흡착에너지 예측용 인공 신경망 구조의 머신러닝 모델을 개발⁶⁾
 - 본 연구에서는 전기음성도 및 몇 가지의 d-band 성질들을 기반으로 CO 흡착에너지를 예측하는 머신러닝 모델을 개발하여, 코어-쉘 구조의 신규 합금 촉매를 개발



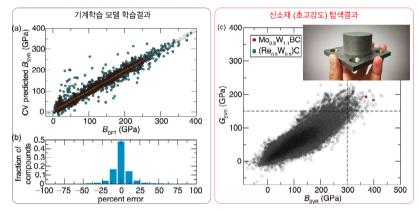
[그림 10] 미국 버지니아 공대 연구팀의 기계학습 모델로 예측된 코어-쉘 합금 소재 연구

⁴⁾ Xie et al.(2018). "Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties", Physical Review Letters 120: 145301

⁵⁾ Ziletti et al.(2018). "Insightful classification of crystal structures using deep learning", Nature Communications 9: 2775

⁶⁾ Ma et al.(2015). "Machine-learning-augmented chemisorption model for CO₂ electroreduction catalyst screening", Journal of Physical Chemistry Letters 6(18): pp.3528-3533

- (암모니아 합성 촉매개발) KIST 한상수, 김동훈 박사 연구팀은 흡착에너지 예측용 촉매 slab 기반의 그래프 신경망 구조 머신러닝 모델을 개발⁷⁾
 - 본 연구에서는 비싼 양자역학 계산법으로 취득할 수 있는 d-band 성질을 인풋으로 사용하지 않음으로써 촉매개발을 가속화
- (초고강도 소재 발굴) 미국 텍사스 휴스턴 대학 Jakoah Brgoch 교수팀은 초고강도의 기계적 성질을 가지는 신소재 탐색을 위해 기계학습모델을 개발⁸⁾
 - 본 연구에서는 체적 탄성율과 전단 탄성율을 정확하게 예측할 수 있는 모델을 활용하여 각각 순서대로 300 GPa 이상, 150 GPa 이상인 카바이드 재료를 2종 발굴함



[그림 11] 미국 연구팀의 초고강도 재료 탐색을 위한 기계학습 모델 개발연구

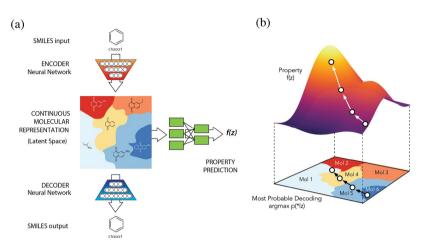
- (금속 소재 개발 가속화) 미국 스탠포드 대학교 Apurva Mehta 교수팀과 노스웨스턴 대학 Chris Wolverton 교수팀은 새로운 3원계 또는 4원계 비정질 금속을 발굴하는 작업에 기계 학습을 도입⁹⁾
 - 연구진은 해당 연구 분야의 소재 발굴 속도를 약 200배 개선시켰다고 보고
- ◎ (역설계) 최근 빅데이터를 활용한 AI 연구가 가능해지면서 원하는 소재 물성・ 특성으로부터 소재 정보(구조, 조성 등)를 예측하는 역설계 분야가 성장
 - (신약 소재 탐색) 2018년 캐나다 토론토 대학에서는 신약 개발을 위한 새로운 분자를 찾기위한 AI 기반 역설계 기술을 개발¹⁰⁾

⁷⁾ Kim et al.(2020). "Artificial intelligence to accelerate the discovery of N_2 electroreduction catalysts", Chemistry of Materials 32(2): pp.709–720

⁸⁾ Tehrani et al.(2018). "Machine learning directed search for ultraincompressible, superhard materials", Journal of the American Chemical Society 140(31): pp.9844-9853

⁹⁾ Ren et al.(2018). "Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments", Science Advances 4(4): eaaq1566

- Variational autoencoder (VAE)라는 AI를 소재 역설계 분야에 처음 도입
- VAE 알고리즘 적용 시 분자 정보는 스마일즈(SMILES)라는 텍스트 인코딩 방법을 사용하였고, 총 358,000개의 데이터를 활용하여 AI 학습 진행

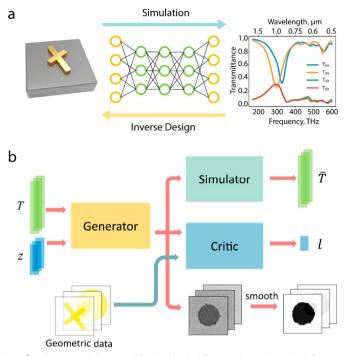


[그림 12] 캐나다 토론토 대학의 VAE 기반의 유기분자 역설계용 AI

- (메타물질 설계) 미국 조지아공과대학에서는 메타물질 설계용 AI 역설계 모델 개발¹¹⁾
 - (기존 연구) 물질이 가질 수 있는 다양한 패턴들에 대해 반복적으로 맥스웰 방정식을 풀어냄으로써 원하는 광학 스펙트럼을 찾아내는 방식
 - (Al 역설계) Generative Adversarial Network (GAN) 알고리즘을 기반으로 연구자가 원하는 광학 스펙트럼을 가지고 메타물질의 기하학적 패턴을 역생성 성공
 - 개발된 역설계 기술은 관심 물성이 하나의 스칼라(scalar) 값이 아닌 훨씬 더 복잡한 형태의 스펙트럼 데이터라는 점에서 의미가 큼

¹⁰⁾ Gomez-Bombarelli et al.(2018). "Automatic chemical design using a data-driven continuous representation of molecules", ACS Central Science 4(2): pp.268-276.

¹¹⁾ Liu et al.(2018). "Generative model for the inverse design of metasurfaces", Nano Letters 18(10): pp.6570-6576



[그림 13] 미국 조지아공과대학에서 개발한 메타물질 역설계용 AI 모델

- (국내 역설계 동향) 국내의 경우 산학연을 중심으로 여러 소재 분야의 AI 역설계 모델을 개발 중
 - (다공소재) KAIST 김지한 교수팀은 GAN 알고리즘을 활용하여 다공소재 설계용 AI 역설계 모델 (ZeoGAN) 개발¹²⁾
 - (무기소재) KAIST 정유성 교수팀은 VAE 알고리즘을 기반으로 무기물질(V-O계)의 안정한 구조를 찾을 수 있는 역설계 모델 개발¹³⁾
 - (OLED 소재) 삼성전자종합기술원에서는 Recurrent Neural Network (RNN) 알고리즘을 기반으로 유기발광다이오드(OLED) 소재 설계용 역설계 모델 개발¹⁴⁾
 - (역설계 전략) KIST 연구팀은 AI를 이용하여 소재의 물성은 구조보다는 조성에 의해 더욱 결정됨을 확인하였고, 이를 기반으로 역설계 모델 개발 시 일정 구조에서 조성 정보를 예측하는 전략이 효율적임을 제안¹⁵⁾

¹²⁾ Kim et al.(2020). "Inverse design of porous materials using artificial neural networks", Science Advances 6(1): eaax9324

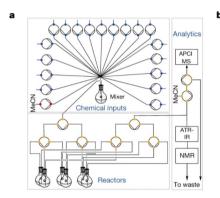
¹³⁾ Noh et al.(2019). "Inverse design of solid-state materials via a continuous representation", Matter 1(5): pp.1370-1384

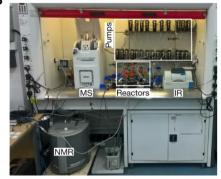
¹⁴⁾ Kim et al.(2018). "Deep-learning-based inverse design model for intelligent discovery of organic molecules", npj Computational Materials 4: 67

¹⁵⁾ Kim et al.(2021). "Deep learning-based prediction of material properties using chemical compositions and diffraction patterns as experimentally accessible inputs", Journal of Physical Chemistry Letters 12(34): pp.8376-8383

2.3 조합실험법

- (최초 사례) 실험실 자율화 기술을 통한 조합실험법 연구는 2018년 영국 글래스고 (Glasgow) 대학에서 유기 합성반응과 인공지능을 융합하여 첫 보고¹⁶⁾
 - (실험 결과 환류) 인공지능 모델을 기반으로 실제 유기물 합성실험의 조건들을 수정해나가는 점을 실현한 첫 시스템이라는 점에서 의의가 있음
 - 그러나, 데모 수준의 초기 버전 시스템이라 로봇 팔조차 활용되지 않는 등 하드웨어 수준이 그다지 높지 않고, 소재 측면에서도 유기물 합성에 국한됨



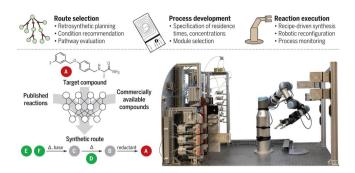


[그림 14] 영국 Glasgow 大 유기물질 합성용 자율화 실험실 구성도 및 하드웨어

- (HW·SW 기술 발전) 이후 실험실 자율화 관련 로봇과 AI·알고리즘 기술이 동시에 발전하며 다양한 소재 분야에서의 활용이 시작되는 추세
 - (로봇 팔 도입) 2019년 미국 MIT에서 소재실험실에 로봇 팔을 도입하여 합성 시약이 담겨 있는 모듈들을 직접 옮기면서 실제 합성을 진행¹⁷⁾
 - 연구자가 합성하기를 희망하는 소재(유기소재 한정) 정보를 입력하면 인공지능을 통해 합성공정을 제안하는 형태로, 원하는 유기소재가 합성될 때까지 연구자 개입 없이 실험을 반복
 - 플라스크나 바이알(vial)을 이용하는 배치(batch) 합성이 아니라 용액의 흐름을 이용하는 유체 합성(flow synthesis)을 이용

¹⁶⁾ Granda et al.(2018). "Controlling an organic synthesis robot with machine learning to search for new reactivity", Nature 559: pp.377-381

¹⁷⁾ Coley et al.(2019). "A robotic platform for flow synthesis of organic compounds informed by Al planning", Science 365(6453): eaax1566



[그림 15] 미국 MIT 유기물 합성경로 제안용 자율화 실험실

- (AI·알고리즘 고도화) 2020년 미국 하버드대학에서는 공정 최적화 인공지능 알고리즘을 개발하여 이를 로봇팔과 연동시켜 유기물 태양전지에 사용하는 활성층 물질을 최적화시키는 자율화 실험실 구축¹⁸⁾
 - 활성층 물질이 시간이 지나도 성능이 저하되지 않는 소재를 찾아내는 것을 실험의 목표로 두고, 활성층 재료 내 최적의 성분 조합 비율을 찾는 것이 목적
 - 최적화 인공지능 알고리즘으로 베이지안 최적화(Bayesian Optimization)를 탑재한 소프트웨어(ChemOS)를 개발하고. 이를 활용하여 최적의 용액 조합 비율을 탐색
 - 자율화 실험실이 실험적인 비용(시약, 실험 시간 등)을 획기적으로 단축시킬 수 있음을 데모 실험을 통해 제시

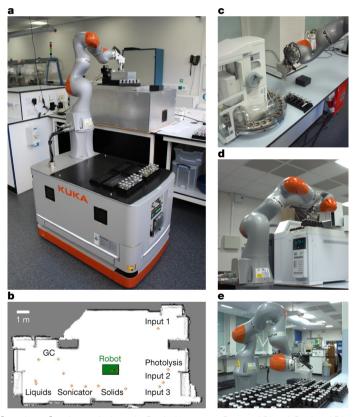
[그림 16] 하버드대 태양전지용 유기물 활성층 합성을 위한 자율화 실험실 HW

• (움직이는 로봇 도입) 2020년 영국 리버풀대학에서는 움직이는 로봇(mobile robot)을 소재 개발에 최초로 도입하였고, 로봇이 실험실 전체를 움직이며 소재 합성·분석 실험을 수행¹⁹⁾

¹⁸⁾ Langner et al.(2020). "Beyond ternary OPV: high-throughput experimentation and self-driving laboratories optimize multicomponent systems", Advanced Materials 32(14): 1907801

¹⁹⁾ Burger et al.(2020). "A mobile robotic chemist", Nature 583: pp.237-241

- 수소생성반응을 촉진시킬 수 있는 광촉매(P10)를 대상으로 촉매 성능 최적화 수행
- 로봇이 낮과 밤의 구분 없이 소재 실험을 할 수 있어 사람이 소재를 개발하는 것보다 그 과정을 가속화 할 수 있음
- 소재 개발용 실험실에서 움직이는 로봇이 활용되었다는 점에서 하드웨어적인 관점에서는 큰 진보라 평가할 수 있지만, 아직은 연구실의 지도(map) 정보를 입력하여 움직이는 수준 이어서 연구자(사람)와 로봇이 연구실에서 함께 작업을 할 때 생길 수 있는 변수들에 대한 대처 능력이 없음



[그림 17] 영국 리버풀대 움직이는 로봇을 도입한 자율화 실험실

- (다양한 응용 시작) 2020년부터 다양한 응용 분야의 소재 자율실험실이 보고되고 있음
 - 미국 노스캐롤라이나 주립대에서 페로브스카이트 양자점 소재의 합성 및 광학적 특성 분석을 자율화하는 플랫폼 보고²⁰⁾
 - 캐나다 토론토 대학에서 금(Au) 나노입자의 유체 기반 합성 및 광학적 특성 분석 자율화 실험실을 보고²¹⁾

²⁰⁾ Epps et al.(2020). "Artificial chemist: an autonomous quantum dot synthesis bot", Advanced Materials 32(30): 2001626

²¹⁾ Tao et al.(2021). "Self-driving platform for metal nanoparticle synthesis: combining microfluidics and machine learning", Advanced Functional Materials 31(51): 2106725

- 독일에서는 산·학 협력을 통해 박막 태양전지 분야의 자율실험실 (AMANDA 플랫폼) 구축²²⁾

[그림 18] 독일에서 구축한 박막 태양전지 개발용 자율실험실

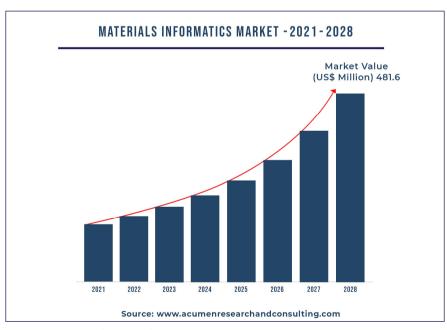
²²⁾ www.amanda-platform.com

제3장 산업동향

※ 데이터를 생성·축적하고 이를 활용하여 소재 개발 인공지능과 알고리즘을 창조한다는 관점에서 소재 신연구방법론은 데이터 기반 재료 설계(Materials Informatics) 분야와 유사하다고 볼 수 있으므로, 이의 산업동향을 조사 및 정리하였음

3.1 시장 동향

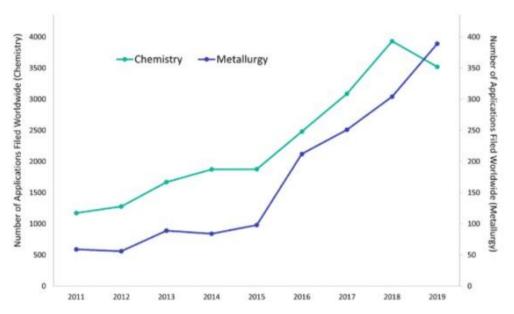
- ◎ 빅데이터와 인공지능을 소재 설계 분야에 적용하는 사례가 지속적으로 증가하고 있으며 데이터 기반 재료 설계 시장은 '21년 이후 연평균 26% 성장
 - 데이터 기반 재료 설계(Materials Informatics, 이하 MI) 시장 규모가 '28년까지 약 4억 8,160만 달러(약 5천 7백억 원)에 이를 것으로 전망²³⁾



[그림 19] Materials Informatics 시장 전망

²³⁾ Acumen Research and Consulting. (2021). https://www.acumenresearchandconsulting.com/materials-informatics-market

• 재료과학 분야 인공지능 응용 프로그램 관련 특허 출원 건수는 해마다 늘고 있으며, 특히 2015년 이후 이전 5년의 증가 폭 대비 2배 이상 급격한 증가세를 보임²⁴⁾



[그림 20] 재료과학 분야 인공지능 응용 프로그램 관련 특허 출원 건수 변화 추이

- 특히 에너지, 환경 문제가 글로벌 이슈화됨에 따라 전기자동차 원천 소재 확보를 위해 스타트업을 중심으로 빅데이터 및 인공지능 기반 소재 설계 기술 투자가 확대
 - '27년 2,797억 달러(약 330조 원) 규모로 이차전지 시장의 급성장이 예상됨²⁵⁾에 따라 차세대 배터리, 모터 소재 기술개발에 적극적으로 투자
 - 인공지능 기반 소재 설계에 필요한 데이터베이스, 시뮬레이션, 실험 로봇 플랫폼 등을 개발, 판매, 컨설팅하는 스타트업이 빠르게 증가
 - 대부분 미국 실리콘밸리에 위치해 재료 설계라는 하나의 SW 플랫폼 사업으로 발전하고 있음

²⁴⁾ Modaq. (2021). https://www.mondaq.com/uk/patent/1126782/ai-in-materials-science-prospects-and-pitfalls

²⁵⁾ Globe Newswire(2021.04.08.), "Global Battery Market Report 2020-2027"

, , , ,	_ "	
재료 설계 기업	국가	제공 서비스
Kebotix	미국	로봇 실험 자동화 솔루션
Citrin Informatics	미국	재료 물성 DB, AI 활용 플랫폼
IBM Accelerated Materials Discovery	미국	양자컴퓨터 활용한 재료 개발
Materials Zone	이스라엘	DFT 시뮬레이션 DB 및 AI 활용 플랫폼
Uncountable	미국	재료 물성 DB 구축, 활용 소프트웨어 플랫폼
Exabyte.io	미국	온라인 재료 시뮬레이션 플랫폼
Schrodinger	미국	DFT 시뮬레이션 SW

〈표 2〉 재료 설계 기업별 제공 서비스

- 이 분야 선도 기업인 Kebotix는 재료 물성 빅데이터, 기계학습 및 로봇 실험 자동화 솔루션을 통해 다양한 조합의 소재 자동 합성 기술을 보유
 - 캐나다 토론토대 Alán Aspuru-Guzik 교수(Kebotix 공동 설립자)가 이끄는 Ada 프로젝트²⁶⁾를 통해 박막 재료 설계를 가속화 할 수 있는 재료합성 자동화 실험실(self-driving lab)을 발표²⁷⁾
 - '20년 1,150만 달러(약 137억 원)의 연구개발비 투자를 받았으며²⁸⁾, '21년에는 미국 국립과학재단(NSF)에서 지원하는 1,500만 달러(약 179억 원) 규모의 연구개발 사업 (Colorado School of Mines가 주도, 11개 회원 대학)에 산업 파트너로도 선정²⁹⁾
- - 현재까지 시뮬레이션 데이터를 주로 활용하고 있으며, 소재·소자 제작 관련 실험 데이터는 전반적으로 부족한 상황
 - 물리·화학적으로 활용 가능한 인공지능 모델 개발 및 자동 조합 실험 등 과제가 상존

²⁶⁾ http://www.projectada.ca

²⁷⁾ Macleod et al.(2020). "Self-driving laboratory for accelerated discovery of thin-film materials", Science Advances 6(20): eaaz8867

²⁸⁾ VentureBeat. (2020). https://venturebeat.com/2020/04/16/kebotix-raises-11-5-million-to-automate-lab-experiments-with-ai-and-robotics

²⁹⁾ Yahoo Finance. (2021). https://finance.yahoo.com/news/kebotix-selected-industry-partner-15-184600929.html

3.2 글로벌 기업 동향

- - 도요타(Toyota)는 배터리와 연료전지용 촉매제 개발을 위해 2017년부터 Stanford, MIT, 일리카(Ilika Plc, 영국 재료과학 전문 업체)와 파트너십을 체결하고 4년간 3천 5백만 달러 (약 411억 원) 규모의 투자를 진행했고, 향후 4년('21~'24)동안 미국의 11개 파트너 기관*에 3천 6백만 달러(약 420억 원) 추가 투자³⁰⁾
 - * 칼텍, 카네기멜론, 코넬, 조지아텍, 로렌스 버클리 국립연구소, MIT, 노스웨스턴, 스텐퍼드, 미시간, 스탠퍼드 선형 가속기 센터, Fraunhofer 연구소
 - 배터리 수명 테스트 가속화, 인공지능 기반 연료전지 재료 설계 방법 개발, 배터리용 폴리머설계를 위한 로봇 플랫폼과 관련된 약 150편의 논문 발표
 - 배터리 오픈 데이터를 구축하고, 인공지능 알고리즘을 오픈 소스로 공개하는 등 MI 저변 확대
 - 폭스바겐(Volkswagen)은 '16년부터 양자컴퓨팅 전담팀을 마련하고, '17년에는 D-Wave(캐나다 양자컴퓨팅 회사), Google과 파트너십을 체결하고 맞춤형 배터리 설계 목적의 재료 시뮬레이션 플랫폼과 인공지능 알고리즘 구축³¹⁾
 - '18년 양자컴퓨터를 이용해 리튬-수소, 탄소 사슬 분자를 성공적으로 시뮬레이션 하는데 성공하여 전기 자동차 배터리의 화학구조 시뮬레이션 최적화 기반 마련
 - 또한 인공지능 알고리즘을 사용하여 무게 감소, 최대 전력 밀도 등 맞춤형 배터리 설계를 단기간에 완성할 수 있는 기술 개발
 - General Motors(GM)은 Li-Metal 배터리 상용화를 가속화 하기 위해 혁신적인 회사와 협력 및 투자 진행
 - Li-Metal 배터리 제조 업체인 SES(Solid Energy Systems)에 투자를 통해 소재 개발, 재활용 및 AI 기반 배터리 성능 최적화 기술 개발 중³²⁾

³⁰⁾ Toyota Newsroom. (2021).

https://pressroom.toyota.com/toyota-research-institute-commits-36-million-in-fund-ing-over-the-next-four-years-for-advanced-materials-design-and-discovery-with-university-partners

³¹⁾ Volkswagen Newsroom. (2018). (https://www.volkswagen-newsroom.com/en/press-releases/volkswagen-tests-quantum-computing-in-battery-research-351

³²⁾ GM Corporate Newsroom. (2021). https://media.gm.com/media/us/en/gm/home.detail.html/content/Pages/news/us/en/2021/mar/0311-battery.html

- 인공지능을 활용해 리튬 이온 배터리의 고속 충전도 가능하게 하면서 기대 수명도 최대 높일 수 있는 최적점을 찾아냄

◎ 기존 소재 기술 선도 기업들도 성능 개선 가속화를 위해 MI 기술을 적극 활용

- 파나소닉(Tesla, Ford사의 배터리 제조사)은 인공지능 기술을 적용해 기존에 3년이 걸리는 수명(충·방전) 테스트 기간을 6개월로 단축³³⁾
- 후지쯔는 전기자동차의 모터, 인덕터 등에 사용되는 강자성체의 자력 손실을 최소화하기 위해 실험, 시뮬레이션, 인공지능을 통합 적용해, 금형 제작부터 수개월이 소요되던 테스트를 단 며칠 만에 완료. 비용, 시간을 획기적으로 단축할 수 있는 기술 개발³⁴⁾
 - '20년에는 자성재료 물성 빅데이터, 시뮬레이션, 인공지능 기반의 제품 설계를 통합 관리하는 클라우드 기반 HPC 플랫폼을 구축
- NEC는 도호쿠 대학 재료과학고등연구소와 공동연구를 통해 자동 이종학습과 머신러닝 적용으로 기존의 백금(Pt) 합금보다 100배 높은 열전 변환 효율을 가지는 소재 개발 기간을 약 1년으로 획기적 단축³⁵⁾
- BASF는 '18년부터 미국 재료 설계 회사 Citrine Informatics와 온실가스 감축을 위한 신촉매 개발 목적의 인공지능 기술 협력 추진³⁶⁾
- Google, IBM 등 IT 회사 또한 인공지능, 양자 컴퓨터 기술을 소재 개발 분야로 확대
 - Google은 미국 칼텍(Caltech)과 협력해 잉크젯 프린터 기반의 새로운 금속 산화물 물질 합성을 가속화하는 방법을 개발하는 등 재료 설계 분야까지 인공지능 확대 적용³⁷⁾

³³⁾ The Wall Street Journal. (2020). https://www.wsj.com/articles/electric-car-batteries-get-a-boost-from-artificial-in-telligence-11604422792

³⁴⁾ Fujitsu Press. (2018). https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0530-01.html

³⁵⁾ 인공지능신문. (2018). https://www.aitimes.kr/news/articleView.html?idxno=11341

³⁶⁾ BASF. (2018). https://www.basf.com/us/en/media/news-releases/2018/06/P-US-18-075.html

³⁷⁾ Yang et al.(2021). "Discovery of complex oxides via automated experiments and data science". PNAS USA 118(37): e2106042118

- IBM은 퀀텀 컴퓨팅(Quantum Computing)·인공지능 기술을 활용하여 미래 배터리 개발을 진행³⁸⁾
 - 공급이 제한적이고 재활용이 어려운 고가의 니켈과 코발트 대신 바닷물(염수)에서 얻을 수 있는 요오드 기반 물질을 사용하는 방법을 발견하여, 배터리 생산 비용 절감
 - 다임러와 함께 퀀텀 컴퓨팅을 이용해 양자 화학 계산을 통한 차세대 배터리 소재 개발 중39)

3.3 국내 기업 동향

☞ 대기업은 인공지능 전담 조직을 마련하여 소재 분야에 적용할 뿐만 아니라 글로벌 선두주자들과 파트너십을 통해 자체 DB 구축 및 인공지능 역량 확보에 주력

기업	재료 설계 분야	신설 인공지능 조직 이름
삼성	OLED 소재	삼성리서치 AI센터
LG	친환경 촉매, 광학 소재	LG AI연구원
현대제철	신강종	스마트 팩토리 전담조직
현대자동차	촉매, 희토류 저감 영구자석	Al Research Lab

〈표 3〉 기업별 재료 설계 분야 및 인공지능 전담 조직

- 삼성종합기술원은 하버드, MIT와 공동연구를 통해 새로운 OLED 소재 탐색 기술 개발
 - 이론, 기계학습, 화학 정보학을 통합하여 OLED 분자를 빠르게 식별하는 대규모 스크리닝 프로세스를 개발하여 '16년 Nature Materials지에 게재(1,000개 이상의 새로운 청색 발광 물질 설계)⁴⁰⁾
 - 대부분 기업들이 알파고가 등장한 '16년 이후로 인공지능 기술을 재료 설계에 도입하기 시작한 반면, 삼성은 이미 수년 정도 앞서 적용하여 국내 시장 선도
- ㈜LG는 그룹 차원에서 캐나다 토론토대와 맥마스터대, 프랑스 에너지·석유회사 '토탈'과함께 '인공지능 기반 소재 개발 컨소시엄(A3MD)'을 결성하고, 친환경 촉매, 차세대 소재 등 공동연구 계획을 발표⁴¹⁾

³⁸⁾ Youtube. (2021). https://www.youtube.com/watch?v=ghZvkUXTdBo

³⁹⁾ IBM Blog. (2020). https://www.ibm.com/blogs/research/2020/01/next-gen-lithium-sulfur-batteries

⁴⁰⁾ Gomez-Bombarelli et al.(2016). "Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach". Nature Materials 15: 1120-1127

⁴¹⁾ 조선일보. (2020). https://biz.chosun.com/site/data/html_dir/2020/09/13/2020091300156.html

- 소재 정보학, 계산화학, 로봇을 이용한 대규모 실험 자동화 분야의 인공지능 전문가 집단과 협업(토론토대 Ted Sargent 교수와 Alan-Aspuru-guzik 교수, 맥마스터대 Drew Higgins 교수)
- 3년간 1억 달러(약 1,100억) 이상 투자해 '상위 1% 인간 전문가' 수준의 학습·사고·판단 능력을 갖춘 초거대 인공지능 개발 계획을 발표⁴²⁾하였으며, 이를 통해 기존의 문헌, 특허 등 대규모 데이터를 학습함으로써 새로운 소재 설계에 크게 기여할 것으로 예상
- 기타 새로운 소재 인공지능 알고리즘(Physics Informed Neural Network 등)을 신규 개발⁴³⁾
- LG화학은 UNIST와 탄소중립·전지 소재 및 인공지능 분야 공동연구를 위한 MOU 체결⁴⁴⁾
- 삼성SDI, LG화학은 리튬 이차전지 전극 재료, 전해질 첨가제 등 배터리 관련 소재 개발 과정에 자체 보유 중인 DB를 활용
- 현대제철은 시뮬레이션 및 기계학습법을 적용해 새로운 철강 재료 개발 기간을 획기적으로 단축
 - '17년 7종의 합금 원소 조합 15억 개 중 최적의 설계안을 10일 만에 도출⁴⁵⁾
 - 정확하고 방대한 시뮬레이션 데이터 확보를 위해 대규모 슈퍼컴퓨터에 투자
- 현대자동차그룹은 멀티 스케일 시뮬레이션 기술을 활용한 가상 소재 설계 플랫폼을 구축하여 전기화학 촉매, 희토류 저감 영구자석, 초저백금 전극 촉매를 개발⁴⁶⁾

⁴²⁾ 매일경제. (2021). https://www.mk.co.kr/news/business/view/2021/05/476762

⁴³⁾ LG AI 연구원. https://www.lgresearch.ai/ourwork/research

⁴⁴⁾ 동아일보. (2021). https://www.donga.com/news/Economy/article/all/20211031/110004967/1

⁴⁵⁾ 매일경제. (2017). https://www.mk.co.kr/news/business/view/2017/07/455485/

⁴⁶⁾ 현대자동차그룹. (2021).
https://tech.hyundaimotorgroup.com/kr/developers-blog/virtual-material-design-technology-in-novation-in-the-development-of-new-materials-in-virtual-space

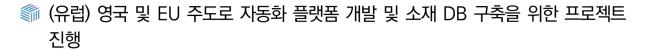
제4장 정책동향

4.1 글로벌 정책 동향

- (미국) 10여 년 전부터 소재 정보학의 혁신을 위한 이니셔티브 마련 및 지속 수행
 - "Materials Genome Initiative" (MGI, '11~)를 통해 소재정보학을 활용한 기존 반복 실험 연구방식 혁신, 데이터 저장・활용 인프라 구축 등 연구방법론 혁신
 - National Institute of Standards and Technology(NIST)에서 MGI와 협력하여 주로 문헌자료 기반의 소재 데이터 저장소 운영
 - "첨단제조 파트너십"(AMP 2.0, '14~) 전략에서 첨단제조업 투자 포트폴리오의 핵심 요소로 첨단소재 개발을 꼽았음
 - 제조과정에서 나오는 대용량 데이터와 정교한 설계 지식을 효과적으로 다룰 수 있는 능력 배양 추진
 - NSF는 "소재 혁신 플랫폼"(MIP, '15~)이라는 경쟁형 프로그램 도입을 통해 고성능컴퓨팅, 실험 도구, 공유데이터, 머신러닝 등을 통합한 프레임워크 제공
 - 추가로 새로운 2개의 합성 생물 소재 기반 플랫폼 구축에 5천만 달러(약 600억 원) 투입 예정('20.7)

/ ∏	1	미구	소재혁신	프래포	사연	혀화
(표	4/	ᄞᅩ	오세역간	글것금	게畄	건권

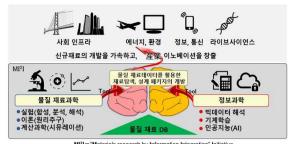
연구 기간	총사업비	프로젝트명	주관 기관	연구 주제
'16–'20	약 20백만달러	MIP-2DCC	Pennsylvania	미래 일렉트로닉스를 위한 2차원 박막
'21-'26	약 20백만달러	WIIF ZDCC	주립대	칼코게나이드 소재 개발
'16-'22	약 28백만 달러	PARADIM	코넬대	산화물과 2차원 박막 소재를 결합한 양자 소재 개발
'20–'25	약 23백만달러	GlycoMIP	버지니아 폴리테 크닉 주립대	생물 및 소재 융합으로 재료 개발을 촉진
'20–'25	약 23백만달러	BioPACIFIC	UCLA	효모, 균류, 박테리아 등의 생물학적인 과정을 활용해 폴리머를 대규모로 고속 합성



- 영국의 공학및물리과학연구회(EPSRC)에서 "Dial-a-Molecule" 프로젝트('10~'25년)를 도입하여 연속 흐름 플랫폼 기반의 유기소재 합성 자동화 시스템 개발 지원
 - 지난 10년간 총사업비 14.5백만 유로를 지원하여 사우샘프턴 대학, 리즈 대학 주도로 1, 2기가 수행되었고, '20년부터 사우샘프턴 대학, 런던 임페리얼 컬리지 주도로 3기 수행 중
 - 다양한 분야의 650명 이상의 연구원과 60개 이상의 기업이 협력하는 대규모 국가 프로젝트로 진행됨
- 유럽연합연구회(ERC)에서는 "SMART-POM" 프로젝트('15-'21년)를 통해 자율적으로 유기소재 합성 및 최적화가 가능한 순환고리형 신소재 개발 플랫폼 연구를 지원하고 있음
 - 총사업비 2.5백만 유로를 지원하여 글라스고 대학팀에서 12가지 이상의 합성 과정을 자동화
- 연구혁신 프로그램 "Horizon 2020"('14~'20)의 하나로 소재 빅데이터 구축사업 추진
 - 오픈연구데이터 시범사업(ORDP) 시행 및 데이터 관리계획 도입, 세계최대 계산물성 DB(NoMAD) 제작

◎ (일본) 소재 데이터 생성·수집·활용을 위한 정책 추진 및 NIMS에 관련 역할 부여

- 데이터 기반 R&D 플랫폼 정비, 주요 영역별(AI, 바이오, 안전 등) 핵심소재 개발 등을 담은 "소재산업 혁신력 강화를 위한 정부 전략" 발표('20.6)
 - 시료·장비·공정 등 소재 연구 메타 데이터의 저장소인 "Materials Data Repository(MDR)" 및 데이터 플랫폼 사이트 "DICE" 오픈('20.6)
- 국립 물질·재료연구 기구(NIMS) 산하 정보통합 물질·재료 연구 센터(CMI2, '15년 창설)에 "정보통합 물질·재료 개발 이니셔티브(MI2I, 총 기간 5년)" 프로젝트 위탁
 - 일본의 연구력·인력 강화의 핵심 거점으로 국제 거점화 및 국내외 관계 기관과의 연계를 위한 "이노베이션 허브"구축 추진



[그림 21] 이노베이션 허브 개념과 NIMS의 MI2I 과제 예시

- "초첨단재료 초고속개발 기반기술 프로젝트"('18~) 사업은 소재 전문가와 데이터과학 전문가가 협업하고 슈퍼컴퓨터와 인공지능을 활용하여 소재 개발 기간을 20분의 1로 단축하는 것을 목표로 함
 - 도레이, 쇼와덴코, 신일철, JSR, 무라타제작소 등 20여 개 업체가 첨단소재 고속개발 기술연구조합을 결성했으며. 경제산업성이 매년 24억엔 규모의 예산 지원
- ◎ (중국) 제조 관련 전략 분야로 신소재 선정 및 중국판 소재 게놈 프로젝트도 추진
 - "중국제조 2025"('15~)에 따라 10대 전략 중점분야로 신소재를 채택하여 집중지원 중
 - 주요 소재를 3그룹으로 분류*하여 R&D 추진, 핵심기술 표준화, 국가기초 신소재 데이터 베이스 구축 등 지원
 - * ① 철강, 비철금속, 석유화학, 건축자재 등 다양한 용도가 있는 선진 기초재료, ② 해양공정, 궤도 교통, 핵발전, 항공 엔진 등 핵심 전략재료, ③ 3D 프린팅 재료, 초전도 재료, 스마트 생체 공학 등 선행 신재료
 - 국가 중점연구 프로젝트로 중국판 MGI 관련 14개 과제를 채택('16.6, 연구비 총액: 3억 위안, 한화 약 480억 원)
 - 재료과학 데이터 공유 네트워크(MSDSN)* 구축을 통해 연구데이터 검색 플랫폼 서비스, 연구데이터 관리 지침 및 교육·훈련 제공
 - * 재료의 종류에 따라 지역별로 하위 노드들이 있으며, 베이징과기大가 허브 역할인 주관 노드 수행 중

[그림 22] 재료의 종류에 따른 중국판 MGI의 지역별 하위 노드

- (캐나다) 소재 개발 실험 자율화 주도국인 加 정부는 "재료 혁신을 위한 자율 발견 가속화"라는 명칭의 프로젝트를 '18년부터 진행
 - 총사업비 약 12백만달러(국비 8백만달러), British Columbia 大 주관
 - "ADA"라는 최신 AI 로봇 플랫폼을 구축하여 고효율·저비용 태양전지 소재 개발 및 최적화를 시범적으로 진행

4.2 국내 정책 동향

- ◎ 우리나라는 소재 연구개발의 혁신을 위해 데이터 기반 소재 R&D 전략 수립
 - "미래소재 원천기술 확보전략"(18.4)을 통해 20년 이상 소요되는 기존의 소재 연구방식을 혁신적으로 전환할 수 있는 연구데이터 수집·공유·활용 인프라 구축을 추진
 - 정부 R&D 과정에서 축적되는 연구데이터 등을 체계적으로 관리하고, 이를 새로운 소재 연구에 적극 활용할 수 있도록 머신러닝 및 인공지능 기술개발 등 융합연구를 병행
 - "소재·부품·장비 2.0 전략"('20.7)의 미래시장 선도를 위한 소부장 개발 ·생산역량 확충 과제에서 신소재 개발 플랫폼의 필요성을 언급
 - (데이터 규모의 경제) 4대 소재정보은행^{*}간 통합연계, 디지털 뉴딜과 연계하여 소재 관련 정부R&D데이터(실패 데이터 포함) 수집·관리 플랫폼^{**} 구축
 - * 4대 분야: 금속(재료研), 섬유(다이텍), 화학(화학研), 세라믹(세라믹기술원)
 - ** 데이터 수집 인프라 구축('20.8~) \rightarrow 3대 분야(에너지·환경/스마트·IT/안전) 기술개발·시범 서비스 ('22~)

- (데이터 표준화 설계) AI가 적용 가능한 데이터 표준화·디지털화 및 신소재 및 합성·제 조공정 설계, 시작품 제작 및 물성평가 추진('21~)
 - * (현재) 소재별 물성정보(150만건) → (개선) AI 학습 가능 데이터 구축(20년, 200만건)
- (측정·분석 및 플랫폼 활용) 고난도 측정·분석 기술공유 및 한계돌파형 新측정·분석기술 개발('21~) 및 소재설계 AI 서비스 개시('22)
 - * (현재) 소재별 물성정보 공개 \to (개선) 소재 조성, 공정 개선 등 신소재 개발 종합 서비스
- "데이터 기반 소재연구 혁신허브 구축·활용방안"('20.10)은 소재 데이터 연구에 대한 가장 자세한 정책이며, 특히 데이터·AI 활용 3대 서비스 제공을 중점 추진과제로 제안

[그림 23] 신소재의 개발에서부터 양산까지의 과정 및 혁신허브 3대 서비스 중점 추진과제

◎ 소재개발 실험실 자율화의 경우, 우리나라 R&D 정책은 초기 단계에 위치

- "글로벌 소재 강국으로 도약을 위한 소재 R&D 투자 혁신 전략"('21.2)에 AI, 데이터, 로봇 공학 등을 융합한 지능형 재료 실험실 구축 내용이 추진과제로 명시
 - 연구자의 개입을 최소화하여 신소재 탐색·설계→합성→결과 분석·환류까지 자율적으로 수행이 가능하도록 구축
 - * 소재연구 혁신허브와 연계하여 생성된 연구데이터 축적 및 결과 환류를 통한 목표 소재 개발
 - 후보물질 탐색을 위한 실험을 자동으로 반복 수행, 물성데이터의 대량·신속 생산·축적 가능
 - * AI 및 계산을 통해 도출된 후보 물질의 최적 조성, 반응조건 등을 고속으로 탐색
 - 출연(연)을 중심으로 시범구축. 성과를 평가하여 산·학·연으로 확산 추진

제5장 정부 R&D 투자동향

- ※ '18~'20년 NTIS 국가연구개발사업 정보 중 중점과학기술 대분류가 "소재·나노"에 해당하고, 연구내용에 소재 신연구방법론 부합 키워드^{*}를 포함하는 과제 목록을 필터링하여 분석 대상을 확정함
 - *소재정보기술: 데이터 or data, 계산재료과학: 인공지능 or 알고리즘 or 머신러닝 or 딥러닝, 조합실험법: 자동화 or 자율화
- - 정부연구비와 과제 수 모두 3년간 꾸준히 증가하고 있으며, 과제당 평균단가는 ('18)3.0억
 → ('19)2.8억 → ('20)3.0억으로 약 3억원대를 유지하고 있음
 - 전체 소재·나노 분야 최근 3년간 누적 정부연구비는 2조 9,981억원이며, 따라서 5,827억원이 투자된 소재 신연구방법론이 이 중 19.4%를 차지

[그림 24] 소재 신연구방법론 관련 정부연구비 및 과제 수

- 최근 3년간 부처별 누적연구비를 살펴보면 산업통상자원부가 소재부품기술개발 사업 내 투자확대^{*} 등으로 인해 3,480억원으로 가장 큰 비중을 차지(59.7%)
 - * 소재부품기술개발 내 소재 신연구방법론 투자 추이(억원): ('18)78.4 → ('19)178.8 → ('20)461.9
- - 나노융합2020(과기부, 산업부) 및 글로벌중소중견기업육성프로젝트지원(산업부, 중기부) 사업 등을 통한 다부처 지원이 이루어졌으나 꾸준한 투자 증가를 나타내지 못함

(표 5) 소재 신연구방법론 - 부처별 정부R&D 투자 추이('18~'20)

(단위: 백만원)

부처	2018	2019	2020	합계
산업통상자원부	98,181	113,426	136,374	347,981
과학기술정보통신부	26,903	50,042	73,104	150,049
중소벤처기업부	10,439	13,690	21,316	45,445
교육부	3,650	5,443	10,758	19,851
다부처	3,781	4,744	3,348	11,873
기타	3,267	2,107	2,154	7,528
합계	146,222	189,451	247,055	582,727

- * 기타 : 경찰청, 국토교통부, 농촌진흥청, 보건복지부, 산림청, 해양경찰청, 행정안전부, 환경부
- ◎ 연구개발단계별 분석 결과, 소재 신연구방법론 분야의 최근 3년간 기초연구와 응용연구에 대한 투자가 개발연구에 비해 크게 확대되었음
 - 최근 3년간 누적연구비 기준 개발연구(2,578억원, 44.2%), 기초연구(1,696억원, 29.1%), 응용연구(1,248억원, 21.4%), 기타(305억원, 5.2%) 순으로 투자가 이루어짐
 - '18년에는 제품화 단계에 가까운 소재 개발연구의 비중이 높았으나, 점차 기초 및 응용 연구 비중이 높아져 '20년에는 소재 원천기술 개발을 위한 기초연구 투자액이 개발연구를 초과

[그림 25] 소재 신연구방법론 - 연구개발단계별 정부R&D 투자 추이('18~'20)

- ◎ 연구수행주체별 분석 결과, 최근 3년간 누적연구비 기준 기업에 투자된 규모가 3,222억원(55.3%)으로 연구소와 대학에 비교해 큰 상황
 - 대학과 출연연구소의 투자 비중이 최근 증가하고 있으며, 산업체(특히 중소기업)의 투자 비중은 감소 → 기초·원천기술개발에 신연구방법론 적용을 통한 소재 R&D 기초체력 강화 기대

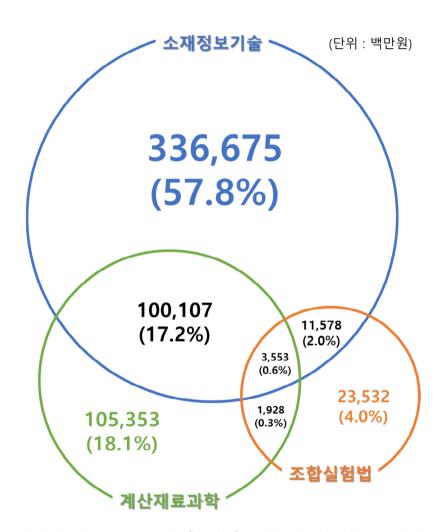
〈표 6〉소재 신연구방법론 - 연구수행주체별 정부R&D 투자 추이('18~'20)

(단위: 백만원)

연	구수행주체	2018	2019	2020	합계
산	대기업	8,515 (5.8%)	12,020 (6.3%)	12,345 (5.0%)	32,880 (5.6%)
	중견기업	7,208 (4.9%)	18,288 (9.7%)	25,265 (10.2%)	50,762 (8.7%)
	중소기업	72,044 (49.3%)	76,338 (40.3%)	90,195 (36.5%)	238,577 (40.9%)
학	대학	32,952 (22.5%)	50,643 (26.7%)	67,884 (27.5%)	151,479 (26.0%)
연	출연연구소	16,556 (11.3%)	20,239 (10.7%)	39,993 (16.2%)	76,789 (13.2%)
기타*		8,947 (6.1%)	11,922 (6.3%)	11,372 (4.6%)	32,240 (5.5%)
합계		146,222 (100.0%)	189,451 (100.0%)	247,055 (100.0%)	582,727 (100.0%)

* 기타 : 병원, 재·사단법인 등을 포함

- - 정부는 최근 3년간 소재정보기술(4,519억원, 77.6%), 계산재료과학(2,109억원, 36.2%), 조합실험법(406억원, 7.0%) 순으로 투자(기술 융합으로 인해 발생한 중복 허용)
 - 소재정보기술, 계산재료과학, 조합실험법으로 나누어지는 기술 분류는 융합이 일어나는 R&D 영역이 있으므로 이의 정부 투자동향 또한 동시에 분석
 - 조합실험법의 경우, 연구내용 "자율화" 키워드를 포함하는 경우가 전혀 없어 조합실험의 단순 "자동화" 연구에 대한 지원만 존재하는 상황



[그림 26] 소재 신연구방법론 - 최근 3년간('18~'20) 누적연구비 기준 기술 분류별 정부 R&D 투자

제6장 결론

6.1 요약 및 정리

- 데이터베이스 구축, 효율적인 AI 및 알고리즘, 실험실 자율화 분야에서 모두 매우 활발한 소재 기술 개발 분위기가 조성
 - 유럽 국가들은 구조정보, 미국은 물성 정보 데이터베이스 운영에 강점이 있으며, 우리나라는 분야별 소재정보은행과 표준참조물질 DB가 과거 구축되었음
 - 소재 개발 시 효율성 확보를 위해, 순방향 설계(소재 정보 → 물성·특성)에 이어 최근에는
 역설계(물성·특성 → 소재 정보) 방식으로 AI 및 알고리즘 활용
 - 소재 개발 실험실 자율화 기술에 대한 연구는 2018년에 처음 보고되었으며, 이후 관련 HW·SW 기술이 동시에 발전하여 다양한 소재 분야에서의 활용이 시작되는 추세
- ◎ 글로벌 자동차·소재 기업의 활약으로 데이터 기반 재료 설계 시장은 지속 성장 중이며, 우리나라 기업들도 자체 데이터·AI 역량 확보를 위해 움직이는 중
 - 빅데이터와 인공지능을 소재 설계 분야에 적용하는 사례가 산업계에서도 지속적으로 증가하고 있으며, 데이터 기반 재료 설계(Materials Informatics) 시장은 '21년 이후 연평균 26% 성장 예측
 - 글로벌 완성차 업체들 및 기존 소재 기술 선도 기업들은 각각 고성능 배터리 기술 개발과 소재 성능 개선에 MI 기술 적용 중이며, IT 기업의 경우 인공지능 및 양자 컴퓨터 기술을 소재 개발 분야로 확대
 - 국내 대기업은 인공지능 전담 조직을 마련하여 소재 분야에 적용할 뿐만 아니라, 글로벌 선두주자들과 파트너십을 통해 자체 DB 구축 및 인공지능 역량 확보에 주력
- SW 관련 분야부터 더욱 진보된 형태의 소재 개발 가속화를 위한 HW 기술 포함 분야까지 주요국들의 R&D 정책적 노력이 존재

- SW 기반 소재 데이터·AI 분야의 경우 약 10년 전 미국의 MGI를 효시로 하여 주요국들도 유사한 형태의 정책을 마련하고 있으며, 우리나라도 소재 연구개발의 혁신을 위해 데이터 기반 소재 R&D 전략 수립
- HW 기술을 포함하는 소재 개발 실험 자율화 프로젝트는 캐나다 정부가 '18년부터 주도하고 있고, 미국 등이 관련 프로그램 도입 중이나, 우리나라의 경우 관련 국가 R&D 정책 및 사업이 초기 단계에 위치
- - 산업통상자원부, 과학기술정보통신부, 중소벤처기업부 등 주요 개별 부처 투자는 증가하는
 가운데 다부처 형태의 정부 R&D 지원은 정체되고 있는 것이 특징
 - 대학과 출연연구소의 투자 비중이 최근 증가하고 있으며, 산업체(특히 중소기업)의 투자 비중은 감소 → 기초·원천기술개발에 신연구방법론 적용을 통한 소재 R&D 기초체력 강화 기대
 - 정부는 최근 3년간 소재정보기술(4,519억원, 77.6%), 계산재료과학(2,109억원, 36.2%),
 조합실험법(406억원, 7.0%) 순으로 기술 분류별 투자(기술 융합으로 인해 발생한 중복 허용)

6.2 정책 제언

- ☞ 글로벌 정책동향 및 현재 우리나라 정부의 투자 분석 결과를 바탕으로 실제소재 개발에 "활용 가능한" 독자적인 데이터 생성 정책 고도화 필요
 - 데이터 활용도 제고를 위해 美 NIST의 Materials Data Repository 등 사례를 참고하여 기존에 구축되어있는 소재 DB의 지속 업데이트 및 데이터 수집·관리 표준 마련 필요
 - 기술 분류별 정부 R&D 투자에서 소재정보기술을 활용하는 계산재료과학 및 조합실험법의 융합 영역 투자 확대(현재 해당 융합 영역은 전체 소재 신연구방법론 투자의 19.8% 차지)
 - Al·알고리즘 분야의 경우 최근 선진국 주도의 협업 및 공유 체계가 형성되고 있으므로,
 우리나라 소재 경쟁력 확보를 위해서는 강점 소재분야의 독자적인 데이터 보유 지원 필요

- - 소재 신연구방법론은 기존에 없었던 새로운 소재 개발에 사용되는 기초·원천기술 분야이므로, 최근 3년간의 기초연구 투자 비중 확대 기조를 지속할 필요
 - 기초연구를 통해 생성된 데이터의 실증·상용화 R&D 분야 및 산업적 활용을 위해 현재 정체되고 있는 다부처 사업 규모의 확대 또는 부처 간 이어달리기의 활성화 필요
 - 소재 R&D 공공 데이터의 범위를 구체적으로 설정하고, 日 "초첨단재료 초고속개발 기반 기술 프로젝트" 등을 참고하여 DB 활용 후속 기술 개발을 위한 민간 기업 지원체계 구축
 - 한편 전체 소재・나노 분야 연구비의 약 80%는 여전히 전통적 소재 연구에 투자되고 있으므로,
 전통 新연구방법론 간 연계성을 고려하여 균형감 있는 정부 지원 포트폴리오 구성 필요
- ₷ 소재 신연구방법론의 기반이 되는 ICT 기술 분야에 대한 투자 또한 필요.
 - Google, IBM 사례와 같이 계산 속도의 획기적 증가를 위한 양자컴퓨터 개발에 투자 확대
 - 실리콘밸리 內 스타트업의 서비스 제공 흐름처럼 동 양자컴퓨터 내에서 사용할 수 있는 계산재료과학 분야에 적합한 AI·알고리즘 동시 개발 지원
 - 소재 데이터의 수집과 표준화 과정 자체를 최대한 자동화할 수 있는 SW 기반 엔진 개발 지원을 통해 연구자들의 시간과 노동력을 절감시키는 효과 제고
- ⑤ 특히 소재 개발 실험실 "자율화" 분야는 소재 R&D의 게임 체인저가 될 수 있는 기술이므로, 관련 정책 확대 필요
 - 소재 개발 실험실 자율화는 AI와 데이터베이스를 구성요소로 하는 기술이므로 소재 연구데이터 플랫폼 구축 등 기존의 소재 데이터 관련 사업들과의 연계 및 고도화 필요
 - HW·SW 분야 간 긴밀한 협동 연구가 필요하므로 英 "Dial-a-Molecule" 프로젝트와 같이 다양한 전문성을 가진 수행기관이 참여하는 연구단이나 컨소시엄 형태로의 연구수행 제안
 - 美 양자점,加 금 나노입자,獨 박막태양전지 등 다양한 국외 사례를 참고하여 특정 분야 (에너지,시스템반도체,바이오 등)를 우선 선정한 후 목적에 따른 소재 개발 실험 자율화 시행 필요

참고문헌

- Burger et al.(2020). "A mobile robotic chemist", Nature 583: pp.237-241
- Coley et al.(2019). "A robotic platform for flow synthesis of organic compounds informed by Al planning", Science 365(6453): eaax1566
- Cyrus Wadia(2012.06.19.), "The Materials Genome Initiative", TechConnect World 2012
- Epps et al.(2020). "Artificial chemist: an autonomous quantum dot synthesis bot", Advanced Materials 32(30): 2001626
- Globe Newswire(2021.04.08.), "Global Battery Market Report 2020-2027"
- Gomez-Bombarelli et al.(2016). "Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach". Nature Materials 15: 1120-1127
- Gomez-Bombarelli et al.(2018). "Automatic chemical design using a data-driven continuous representation of molecules", ACS Central Science 4(2): pp.268-276
- Granda et al.(2018). "Controlling an organic synthesis robot with machine learning to search for new reactivity", Nature 559: pp.377-381
- Kim et al.(2018). "Deep-learning-based inverse design model for intelligent discovery of organic molecules", npj Computational Materials 4: 67
- Kim et al.(2020). "Artificial intelligence to accelerate the discovery of N2 electroreduction catalysts", Chemistry of Materials 32(2): pp.709-720
- Kim et al.(2020). "Inverse design of porous materials using artificial neural networks",
 Science Advances 6(1): eaax9324
- Kim et al.(2021). "Deep learning-based prediction of material properties using chemical compositions and diffraction patterns as experimentally accessible inputs", Journal of Physical Chemistry Letters 12(34): pp.8376-8383
- Languagner et al.(2020). "Beyond ternary OPV: high-throughput experimentation and self-driving laboratories optimize multicomponent systems", Advanced Materials 32(14): 1907801
- Liu et al.(2018). "Generative model for the inverse design of metasurfaces", Nano Letters 18(10): pp.6570-6576

- Ma et al.(2015). "Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening", Journal of Physical Chemistry Letters 6(18): pp.3528-3533
- Macleod et al.(2020). "Self-driving laboratory for accelerated discovery of thin-film materials",
 Science Advances 6(20): eaaz8867
- Noh et al.(2019). "Inverse design of solid-state materials via a continuous representation",
 Matter 1(5): pp.1370-1384
- Ren et al.(2018). "Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments", Science Advances 4(4): eaaq1566
- Tao et al.(2021). "Self-driving platform for metal nanoparticle synthesis: combining microfluidics and machine learning", Advanced Functional Materials 31(51): 2106725
- Tehrani et al.(2018). "Machine learning directed search for ultraincompressible, superhard materials", Journal of the American Chemical Society 140(31): pp.9844-9853
- Xie et al.(2018). "Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties", Physical Review Letters 120: 145301
- Yang et al.(2021). "Discovery of complex oxides via automated experiments and data science". PNAS USA 118(37): e2106042118
- Ziletti et al.(2018). "Insightful classification of crystal structures using deep learning", Nature Communications 9: 2775
- 과기정통부(2021.03.), 「2022년도 국가연구개발 투자방향 및 기준」
- 한민규 외(2014.08.), 「창의소재 디스커버리 사업 예비타당성 조사보고서」, 한국과학기술기획평가원

|저자소개|

정 두 엽

한국과학기술기획평가원 성장동력사업센터 부연구위원

Tel: 043-750-2728 E-mail: dooyupjung@kistep.re.kr

조 유 진

한국과학기술기획평가원 성장동력사업센터 연구원

Tel: 043-750-2625 E-mail: ujin@kistep.re.kr

|편집위원소개|

류 영 수 선임연구위원

진 영 현 연구위원

여 준 석 부연구위원

이 승 필 부연구위원

이 강 수 부연구위원

한국과학기술기획평가원 사업조정본부

Tel: 043-750-2503 E-mail: lks@kistep.re.kr

[KISTEP 브리프 발간 현황]

발간호	제목	저자 및 소속	비고
01	시스템반도체	채명식 (KISTEP)	기술동향
02	미 하원「2022년 미국 경쟁법」주요 내용과 시사점	최창택 (KISTEP)	혁신정책
03	메디컬 섬유소재	정두엽 (KISTEP)	기술동향
04	2020년 한국의 과학기술논문 발표 및 피인용 현황	한웅용 (KISTEP)	통계분석
05	2020년 신약개발 정부 R&D 투자 포트폴리오 분석	강유진·김주원 (KISTEP)	통계분석
06	바이오헬스 정책・투자동향	김종란·강유진·홍미영 (KISTEP)	기술동향
07	러시아-우크라이나 사태에 따른 과학기술 동향과 시사점	김진하·이정태 (KISTEP)	혁신정책
08	미래 스마트 팩토리 유망 서비스	KISTEP·ETRI	미래예측
-	2030 국가온실가스감축목표에 기여할 10대 미래유망기술	이동기 (KISTEP)	이슈페이퍼 (제323호)
09	바이오연료	박지현·강유진 (KISTEP)	기술동향
10	2020년 국내 바이오산업 실태조사 주요 결과	한웅용 (KISTEP)	통계분석
11	일본 과학기술·경제안전보장전략 주요내용과 시사점	김규판(KIEP) 김다은·홍정석(KISTEP)	혁신정책
12	6G 통신 기술	이승필·형준혁 (KISTEP)	기술동향
13	우리나라 산업기술인력 수급 현황 - 2020년도 기준 -	한웅용 (KISTEP)	통계분석
14	소재 신(新)연구방법론	정두엽·조유진 (KISTEP)	기술동향