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Accelerated mapping of electronic 
density of states patterns 
of metallic nanoparticles 
via machine‑learning
Kihoon Bang1, Byung Chul Yeo2, Donghun Kim2, Sang Soo Han2* & Hyuck Mo Lee1*

Within first-principles density functional theory (DFT) frameworks, it is challenging to predict 
the electronic structures of nanoparticles (NPs) accurately but fast. Herein, a machine-learning 
architecture is proposed to rapidly but reasonably predict electronic density of states (DOS) patterns 
of metallic NPs via a combination of principal component analysis (PCA) and the crystal graph 
convolutional neural network (CGCNN). With the PCA, a mathematically high-dimensional DOS 
image can be converted to a low-dimensional vector. The CGCNN plays a key role in reflecting the 
effects of local atomic structures on the DOS patterns of NPs with only a few of material features 
that are easily extracted from a periodic table. The PCA-CGCNN model is applicable for all pure and 
bimetallic NPs, in which a handful DOS training sets that are easily obtained with the typical DFT 
method are considered. The PCA-CGCNN model predicts the R2 value to be 0.85 or higher for Au pure 
NPs and 0.77 or higher for Au@Pt core@shell bimetallic NPs, respectively, in which the values are 
for the test sets. Although the PCA-CGCNN method showed a small loss of accuracy when compared 
with DFT calculations, the prediction time takes just ~ 160 s irrespective of the NP size in contrast to 
DFT method, for example, 13,000 times faster than the DFT method for Pt147. Our approach not only 
can be immediately applied to predict electronic structures of actual nanometer scaled NPs to be 
experimentally synthesized, but also be used to explore correlations between atomic structures and 
other spectrum image data of the materials (e.g., X-ray diffraction, X-ray photoelectron spectroscopy, 
and Raman spectroscopy).

Nanoparticles (NPs) are of great scientific interest because they often show unexpected physical and chemical 
properties resulting from their quantum confinement effect1,2 or high surface area3,4. This leads to various appli-
cations of NPs, such as quantum dots5–7, magnetic8,9 or bio-10–13 materials, and catalysis3,14–21. As a key feature 
to determine the properties of NPs, an electronic structure such as electronic density of states (DOS) has been 
usually considered, where the electronic structure significantly depends on the sizes and shapes of the NPs 
although the elements constituting the NPs are identical9,17,20,22–26.

First-principles density functional theory (DFT) calculations have been mainly utilized to predict DOS 
patterns of NP structures. In particular, the plane-wave (PW) basis has been employed for metallic NP systems 
despite its extremely high computational cost for large finite-size systems. Moreover, NP structures require a 
much higher computational cost than bulk or slab structures. In the PW–DFT framework, it is necessary that 
the entire simulation box, including the vacuum space, must be filled with PWs, seriously reducing the com-
putational speed27. In this regard, the fast but accurate electronic structure calculation for metallic NPs still 
remains challenging.

To bypass the first-principles framework, a machine-learning (ML) approach has been recently pursued28–42. 
In particular, Chandrasekaran et al.29 developed a neural network (NN) model for the prediction of DOS patterns 
and showed that its computational cost was linearly scaled with system size (N) [O(N)], while the DFT method 
was scaled as O(N2). With a similar aim, Yeo et al.30 developed an ML scheme based on principal component 
analysis (PCA) and successfully applied it to bulk and slab structures of multicomponent metallic systems. 
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Moreover, it showed a computational cost independent of the system size. Despite such success, the scheme 
predicts the DOS pattern of a test system via a linear interpolation between the two training systems that is most 
similar to the test composition, which likely reduces the versatility of the scheme. When mapping the DOS pat-
terns of materials, it is important to appropriately reflect the local environments of each atom in the structures 
because the DOS patterns are sensitive to the local atomic environment.

Metallic NP structures can be regarded as consisting of core and shell regions. Here, although the core 
region can be treated as a bulk structure, the shell region is an assembly consisting of surface atoms with various 
coordination numbers, which motivates us to improve the previous PCA-based method by more elaborately 
learning the local environments of atoms in NPs when predicting their DOS patterns. Xie and Grossman43 
reported a crystal graph convolutional neural network (CGCNN) framework enabling a universal and inter-
pretable representation of crystalline materials. This model converts atomic structures in bulks to graphs, and 
then the graph fingerprints learn the local environments of atoms by an additional CNN process. Compared 
with other ML frameworks widely used in materials science field such as Gaussian Process Regression37,39,40 or 
LSBoost36,38, the CGCNN has several advantages when used to predict DOS patterns of NPs. First, the CGCNN 
can account for the local chemical environment of atoms which can sensitively affect the DOS patterns during 
the learning process via convolution of the constructed graphs. Also, there is no limitation regarding atomic 
structure (number of atoms, number of elements, shape, etc.) for the input of the CGCNN framework, thus, NP 
structures with various size and shape and corresponding DOS patterns can be used as datasets. Moreover, the 
CGCNN provides reasonable accuracy even with just periodic-table level properties as features, indicating that 
no additional quantum calculation is needed in predicting the DOS pattern. Recently, we also demonstrated 
that the CGCNN framework can be extended to slab structures21. These facts reveal that the CGCNN is readily 
applicable for representing atomic structures of NPs, and a combination of PCA and the CGCNN is expected to 
provide a reasonable and fast mapping of DOS patterns of NPs.

In this work, we propose an ML paradigm to predict DOS patterns (both of shapes and of values) of metallic 
NPs through a combination of PCA and the CGCNN, where the model is learned with DOS patterns of small-
sized NPs (e.g., Au19) that are not time-consuming to obtain with the state-of-the-art DFT calculations. Within 
the PCA-CGCNN framework, one can predict DOS patterns for not only pristine NPs but also alloyed ones with 
a small loss of accuracy compared to DFT calculations, where effects of the sizes and shapes of metallic NPs have 
also been explored. Moreover, the method shows a computational cost nearly independent of the system size.

Computational details
NP structures for the DOS database.  Figure 1 shows various NP structures used in the training and test 
sets. We prepared NPs composed of 19–140 atoms with symmetric shape. These NP structures have been studied 
in various catalyst researches22,44,45 as they represent specific surface properties and size effects. The NPs with 
symmetric shapes were constructed by Atomic Simulation Environment module46 and DFT ionic relaxation. 
In addition, to consider local environment effects such as strains and defects, NPs with asymmetric shapes (40, 
45, and 50 atoms) were also considered, where the asymmetric NPs were constructed by molecular dynamics 
simulations using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package47 and 
embedded atom method potentials48. The detail is described in Supplementary material.

DFT calculations.  To obtain electronic DOS patterns of the training and test NP structures, spin-polarized 
DFT calculations with plane-wave basis sets were carried out using the Vienna Ab  initio Simulation (VASP) 
package49,50. We used the generalized gradient approximation with the revised Perdew-Burke-Ernzerhof 
functional51,52 to describe the exchange–correlation energy of electrons. Ionic cores were treated by the projec-
tor-augmented wave (PAW) method53. The plane-wave cutoff was set to 520 eV, and the convergence criteria for 
electronic structure and atomic geometry were 1.0 × 10–4 eV and 0.03 eV/Å, respectively. The Brillouin zone was 
sampled using a Monkhorst–Pack k-point mesh54, and the k-point sampling was set to 1 × 1 × 1 for NP structures. 
A large vacuum spacing > 20 Å was used for NP structures to prevent interslab interactions. The DOS patterns 
were normalized by the number of atoms in the system and were shifted to set the Fermi level (Ef) to 0 in the 
pattern.

Details of PCA.  Because the mathematical dimension of a DOS pattern is very high (e.g., 3000 energy lev-
els × DOS values of 4-byte floats in our DFT calculations), it is very challenging to map the DOS pattern with 
only common material features as an input information, such as the number of atoms, composition, and lattice 
parameter. Thus, it is necessary to reduce the DOS patterns to a low-dimensional vector. To do this, we applied 
PCA in this work. Prior to the analysis, the training DOS data were regularized into 200-dimension vectors in 
the energy range of − 8 to 3 eV relative to the Fermi level (0 eV) by interpolation, where the energy range was 
divided into 200 energy windows. The 200-dimensional DOS vectors were represented with the DOS values 
themselves at each energy window, although Yeo et al.30 converted a DOS pattern to a digital image vector with 
M × N entries (black and white pixels), implying that the DOS image vector can include information irrelevant 
to the original DOS values. We standardized the DOS vectors of the training data by obtaining the normalized 
matrix Y , in which the ith energy window ( yi ) of Y is xi − x , where x is the mean of each column vector of X . 
Then, we calculated the principal components (PCs) or eigenvectors, up=(u1, u2, . . . , u200)p , and the correspond-
ing eigenvalues, �p , were calculated by the covariance matrix, S = YTY, and Eq. (1).

(1)Sup = �pup
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Figure 1.   Training and test datasets for DOS prediction of NPs. In the NP structures, COh, Ih, Oh, TOh, and 
Cube indicate cuboctahedral, icosahedral, octahedral, tetraoctahedral, and cubic structures, respectively.
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The original DOS image vector x can be reconstructed as follows:

where P is the number of used PCs and p is their index. Thus, coefficient αp of the eigenvectors can be computed 
by yTup + xTup , corresponding to the coordinate values on the linear subspace that is composed of PCs. In 
other words, the signal vector α = (α1, α2, α3,…, αP)T can be defined as a one-to-one correspondence vector of x. 
Similar to Yeo et al.30, we implemented our own Python code to perform PCA as we described above. NumPy 
package was used for matrices operation during the PCA process. However, in our new scheme, we extracted 
the signal vectors for partial DOS patterns of each atom in NP structures by the PCA process, while Yeo et al.30 
considered total DOS patterns.

DOS pattern similarity.  The DOS pattern similarity of our PCA-CGCNN model was calculated through 
two values. One is the coefficient of determination (R2) of the DOS pattern, which is defined as follows:

And, the other is mean absolute error (MAE), which is defined as follows:

where ρ and ρ′ are the DOS patterns calculated by DFT and predicted by our PCA-CGCNN model, respectively, 
and ρ is the average of DOS patterns calculated by DFT, and m is the number of energy windows.

Results and discussion
Architecture of the PCA‑CGCNN model.  In predicting the DOS pattern of a test system, we used the 
CGCNN43 model to determine the new signal vector for the test system (Fig. 2). Following the original CGCNN 
scheme, graphs for NP structures were constructed with nodes and edges, in which the nodes and edges repre-
sented atoms and bonds, respectively. In the graph, the atom vector vi was encoded in a one-hot manner only 
with features that were readily available from the periodic table of elements (e.g., period/group number, melting 
temperature, etc.) due to their categorical property. The bond vector u(i,j) was also encoded in a one-hot manner 
based on the bond length between atoms, in which the bond between the ith and jth atoms was defined only if 
di,j < ri + rj + Δ, where dij is a distance between the atoms i and j, and ri¸and rj are the radii of atoms i and j, respec-
tively, with the tolerance Δ = 0.25 Å. A list of the input features for the atom and bond vectors and their ranges/
categories is available in Supplementary Tables S1 and S2.

Then, CNN processes were performed on top of the constructed graph, which consisted of a sequence of 
convolutions. The convolution functions first concatenated neighbor vectors zt

(i,j)
= νti ⊕ νtj ⊕ u(i,j) and then 

performed convolutions to update each atom vector, as follows:

where t denotes the number of convolutional layers; ⊕ denotes concatenation; ⊙ denotes element-wise multiplica-
tion; σ is a sigmoid function; g is the rectified linear unit (ReLU) function; and Wt

f  , W
t
s  and btf  , b

t
s are convolutional 

weight metrics and biases of the ith layer, respectively. After the convolution, the atom vectors for each atom 
learned with surrounding atoms and bonds in the NP structures can be extracted. Then, the learned atomic 
vectors were fully connected with the atomic signal vectors obtained from PCA via a neural network, in which 
the processes were performed for each atom in the training NP systems. Then, the total DOS pattern for a given 
NP structure was reconstructed through a summation of the partial DOS patterns mapped by the PCA-CGCNN 
architecture. The proposed architecture was implemented in the Python code with the TensorFlow framework 
(version 1.13.1) and NumPy package.
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Figure 2.   Illustration of the PCA-CGCNN architecture. (a) Dimension reduction of DOS vector by principal 
component analysis (PCA). The coefficients (α) became signal vector. (b) Construction of the crystal graph 
(CG) of NP structures and the structure of the convolutional neural network (CNN) on top of the CG. NP 
structures are converted to graphs with nodes and edges representing atoms and bonds, respectively. Then, the 
CNN processes are followed to reflect the local environments of each node in the CG. (c) ) Determination of 
signal vectors. After the CGCNN process, the new graph vector for each atom is fully connected with a signal 
vector for the DOS representation of each atom by neural networks. (d) DOS representation. With the signal 
vector obtained from the CGCNN, atomic DOS patterns are reconstructed on the basis of PCA. The sum of 
each atomic DOS pattern produces a total DOS pattern of the NP.
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Hyperparameter optimization of the PCA‑CGCNN model.  The hyperparameters of the PCA-
CGCNN model were thoroughly tested. One of the most important hyperparameter is the size of the output 
node in the CGCNN model, which is identical to the number of used PCs in PCA. As the number of used PCs 
increases during the PCA process, the loss of information decreases. However, the number of parameters in 
CGCNN increases as the size of the output node increases, thus it would be challenging to train the CGCNN 
model with a unsufficient number of data. To find a suitable number of the output node, we calculated the ratio 
of information (reconstruction rate) and the MAE for the DOS signal vectors of NPs as a function of the PC 
number, where Au NPs were considered as an example. As shown in Supplementary Fig. S2, the lowest MAE was 
observed when 41 PCs were used and the ratio of information at the point showed a reasonable value of 0.969.

The other hyperparameters were optimized in a similar manner. The optimized values shown in parenthe-
ses are as follows: the number of convolution filters and layers (1 filter, 2 layers), initial learning rate (1 × 10–3), 
exponentially decaying learning rate (0.97 for every 100 epochs), nodes of the hidden layers (3 layers with 63 
nodes/layer), standard deviation of normally distributed random initial weights (0.01), batch size (32), and total 
number of epochs (1000). The loss function was set as the mean square error (MSE).

As the number of training data is quite small, an overfitting problem would be likely issued during training 
convolutional neural network. Similar to Xie et al.43 and Kim et al.21, the dropout55 and L2 regularization were 
applied to overcome the overfitting, where the dropout rate and L2 regularization coefficients were 0.1 and 10–5, 
respectively. As shown in Fig. S10, the MAE difference between the training and validation set become much 
lower by considering the dropout and regularization. Therefore, we can conclude that our model readily over-
comes the overfitting via the dropout and regularization.

For atom vectors, we considered the following features; group number, period number, radius, electronegativ-
ity, ionization energy, electron affinity, volume, atomic weight, melting temperature, boiling temperature, density, 
Zeff, polarizability, resistivity, heat capacity, the number of valence electrons, and the number of d-electrons. A 
list of the input features for the atom and their ranges/categories is available in Supplementary Table S1. To select 
appropriate features for the atom vector, we calculated the MAE for the signal vectors of Au NPs as a function of 
the number of features (Supplementary Fig. S2). For the cost efficiency, the best feature set was fixed by increasing 
the number of features. For example, the lowest MAE for the use of one feature was found with an atomic weight; 
thus, atomic weight was always included in the feature sets of the subsequent tests. From this optimization, the 
lowest MAE was found when only one feature (atomic weight) were used. Therefore, in this work, we used the 
one feature for representing the atom vectors of Pt, Au, and Pd in the CGCNN. For bond vectors, we categorized 
distances between two atoms in the range of 2.4 to 3.4 Å into 40 dimensions (Supplementary Table S2).

DOS prediction with PCA‑CGCNN model: pure NPs.  To validate our PCA-CGCNN model, we 
started with pure metallic NPs (Au, Pd, and Pt). A comparison of the DOS patterns of Au NPs obtained from 
the DFT method and the PCA-CGCNN model is shown in Fig. 3. For the Au NPs, the similarities (R2 and MAE) 
of the DOS patterns reconstructed from the PCA-CGCNN model are in the ranges of 0.911 ~ 0.998 (R2) and 
0.050 ~ 0.123 (MAE) for the training systems and 0.850 ~ 0.936 (R2) and 0.096 ~ 0.137 (MAE) for the test systems 
(Fig. 3a). The similarity is overall increased as the NP size becomes larger, which can be understood from the 
fact that a larger NP has lower surface fraction. Because surface atoms in NPs have different chemical environ-
ments (e.g., coordination numbers and bond lengths) than core atoms, it is likely more challenging to map DOS 
patterns of the smaller NPs in a given dataset. Considering that the computation cost of the DFT calculation is 
significantly increased with the size of NPs29,56, the superior prediction capability of the PCA-CGCNN model 
for larger NPs becomes a strong advantage of this model in terms of computational efficiency. In Fig. 3b,c, the 
DOS patterns of Au55 and Au108 NPs are shown, where the DOS similarities (R2) of the PCA-CGCNN model are 
0.998 and 0.936, respectively. Indeed, our ML scheme reasonably reproduces the DFT pattern; in particular, the 
peak positions are very well matched, although only a handful of training structures are considered. For pure 
Pt and Pd NPs, our ML scheme demonstrates similar predictive abilities to those observed in the Au NPs (Sup-
plementary Figs. S3 and S4), which clearly validates our PCA-CGCNN method.

Interestingly, the prediction performance for Pd NPs is slightly better than Au and Pt NPs. To unveil the 
reason, we compared the ratios of information (reconstruction rates) for the DOS patterns of Au, Pt, and Pd NPs 
during PCA process and found that the reconstruction rate for Pd NPs is higher than Au and Pt NPs (Fig. 4), 
which indicates that the DOS patterns of Pt and Au NPs are more dispersed than those of Pd NPs. This is more 
clearly observed by comparing the average of standard deviation for the DOS value at each energy level. Indeed, 
the value for Pd NPs is 0.238, which is lower than those of Au (0.253) and Pt (0.254) NPs. The difference comes 
from the polarizability of elements. As the electric dipole polarizability of Pd (26.1 a.u.) is smaller than Au (36 
a.u.) and Pt (48 a.u.)57, the electrons of Pd are relatively less sensitive to the local environment in the NP structures 
than those of Au and Pt and thus the DOS patterns of Pd NPs would be less changed in comparison to those of 
Au and Pt, which matches with the trend observed in PCA (Fig. 4). Accordingly, the PCA-CGCNN method is 
sensitive to the dispersity of DOS and shows a better performance for Pd NPs than Au and Pt NPs.

DOS prediction with PCA‑CGCNN model: bimetallic core@shell NPs.  To examine the transfer-
ability of our PCA-CGCNN method to bimetallic systems, Pd–Pt and Pt–Au binary core@shell systems. In 
training DOS patterns for the systems, we used training DBs including pure and alloyed systems (Supplementary 
Fig. S5). When learning DOS patterns in each bimetallic system, we first applied PCA for atoms in training sys-
tems together, hereafter called total ML. The ML model for the Au@Pt systems provides low DOS similarities. 
Even for Au6@Pt32 in the training set, the DOS similarity (R2) value is so low that it is only 0.173. (Fig. 5). For 
other core@shell-type systems, similar behaviors are observed (Supplementary Figs. S6–S8).



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11604  | https://doi.org/10.1038/s41598-021-91068-8

www.nature.com/scientificreports/

Figure 3.   PCA-CGCNN performance on Au NPs. (a) The DOS pattern similarity (R2 and MAE) of our PCA-
CGCNN model compared to DFT methods. Here, pure Au NPs are considered. Bars indicate R2 value and 
blue squares indicate MAE. Gray bars indicate training data, and red bars indicate test data. (b,c) Comparison 
of DOS patterns for Au85 (b) and Au108 (c) NPs predicted by the DFT method (orange) and the PCA-CGCNN 
model (red).

Figure 4.   PCA of Au, Pt, and Pd NPs. The ratios of information for DOS patterns of Au, Pt, and Pd NPs DOSs 
in PCA analysis. Here, the ratio of Pd NP is higher than those of Au and Pt NPs.
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To improve the prediction ability of our PCA-CGCNN model, we propose a separate learning scheme during 
the PCA algorithm. For example, when predicting the DOS patterns of Pt–Au NP systems, the original PCA-
CGCNN model was simultaneously trained with the DOS patterns of Pt, Au, and bimetallic Pt–Au NPs in the 
training set, and then the DOS patterns were predicted or reconstructed by the single model. However, in the 
separate learning scheme, the DOS patterns are individually trained for each atom, i.e., one model is trained 
with the atomic DOS patterns of Pt atoms in pure Pt and Pt–Au NPs, and another model is trained with those 
of Au atoms in pure Au and Pt–Au NPs. In the prediction process, the patterns of Pt atoms in bimetallic NPs are 
mapped with the Pt DOS-trained model, and the patterns of Au atoms are mapped with the Au DOS-trained 
model. Then, the mapped partial DOS patterns are summed to obtain the total DOS of each NP. In Fig. 5, the 
prediction ability of the PCA-CGCNN model for the Au@Pt NPs is significantly improved by the separate 
learning scheme. The DOS similarities (R2 values) of Au6@Pt32, Au6@Pt38, and Au44@Pt96 are 0.173, 0.622, and 
0.460 from the total ML scheme, respectively; however, the separate ML scheme leads to 0.896, 0.770, and 0.853, 
respectively (Fig. 5a). Moreover, the DOS peak positions mapped by the separate ML scheme are much better 
matched with the DFT peaks than those mapped by the total ML scheme (Fig. 5b,c). Similar improvements are 
also observed in other bimetallic NP cases (Supplementary Figs. S6–S8).

The main origin of improvement can be explained with the dispersity of DOS patterns, similar to pure NP 
cases. In the total learning scheme, the average of standard deviation for DOS patterns of the Au–Pt NPs at each 

Figure 5.   PCA-CGCNN performance on Au@Pt bimetallic NPs. (a) The DOS pattern similarity (R2 and 
MAE) of our PCA-CGCNN model compared to DFT methods. Here, bimetallic Au@Pt NPs are considered. 
Bars indicate R2 value and blue squares indicate MAE. (b,c) Comparison of DOS patterns for Au6@Pt38 (b) and 
Au32@Pt76 (c) NPs predicted by the DFT method (yellow) and the PCA-CGCNN model (blue = total learning 
and red = separate learning).
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energy level is 0.323. This value is much higher than those of Au and Pt atoms in separate learning scheme, 
which are 0.268 and 0.259, respectively. This trend is also confirmed with the ratio of information for the PCA 
process (Supplementary Fig. S9). Indeed, the total learning scheme shows much lower reconstruction rates of 
DOS patterns than those of the separate learning.

Computational cost for DOS prediction.  As already mentioned, DFT calculations of NP structures 
require an extremely increasing computational cost as the NP size increases. Thus, a comparison of computa-
tion speeds between DFT and the PCA-CGCNN method is of great interest. With an example of Pt NPs, we 
benchmark the computational speeds of each method (Fig. 6). Here, the DFT calculations were performed on 
20 cores of a 2.3  GHz central processing unit (CPU), while the PCA-CGCNN calculations were performed 
on a personal computer with a single GTX 2070 graphics processing unit (GPU). In Fig. 6, it is clear that the 
PCA-CGCNN method is extremely fast compared with the DFT method. For example, for Pt116 and Pt147 NPs, 
the DOS calculations via the DFT method take 430 and 570 h, respectively, which are much longer times than 
those for the PCA-CGCNN method (158 s for Pt116 and 159 s for Pt147). Here, the computational times for the 
PCA-CGCNN method are measured as a sum of training and prediction times. The PCA-CGCNN method takes 
only ~ 160 s (training: ~ 150 s, prediction: < 10 s) for mapping the DOS patterns of NPs irrespective of the sizes 
of NPs, which is similar to the times reported for the previous PCA-only model30. This indicates that the addi-
tion of the CGCNN into the PCA method does not sacrifice the computational cost at all; instead, the addition 
of the CGCNN provides a more flexible and accurate approach. Moreover, as already mentioned, the prediction 
speed of our PCA-CGCNN scheme is not nearly as affected by the system sizes of NPs when compared with DFT 
frameworks, indicating that it has a potential for a higher speed than other linear scale methods such as tight 
binding (TB) or density functional TB (DFTB).

Conclusion
In conclusion, we have developed the ML model combining PCA and the CGCNN to predict the DOS patterns 
of various types of NPs with a handful of training sets that can be obtained without great difficulty by the typical 
DFT frameworks, in which the PCA-CGCNN method is applicable for not only pure NPs but also bimetallic 
NPs. Comparing different types of NPs, there was a performance change in the ML model, which results from 
the dispersity difference in DOS patterns of NPs. In particular, for pure NPs case, it originates from the dipole 
polarizability between Au, Pt, and Pd. Although there is a small loss of accuracy with our PCA-CGCNN method 
compared to DFT calculations, the prediction speed is much faster than those of typical DFT frameworks. In par-
ticular, the prediction speed is not nearly as affected by the system sizes of NPs when compared with DFT frame-
works. In this regard, our ML approach can become an option to circumvent DFT calculations, with which one 
can predict the DOS patterns of actual nanometer-scale NPs mostly synthesized in experiments which remains 
challenging within DFT frameworks. In this work, our ML model was applied for total DOS with up-spin only. 
However, with the sufficient DOS pattern data, our model would be readily applicable for the different types of 
DOS patterns (e.g., down-spin or d-orbital DOS) via a separate learning scheme. Therefore, our approach can be 
immediately applied to accelerate material design in diverse nanotechnology fields such as catalysis, biomaterials, 
and optics. Moreover, because our approach provides a flexible framework in handling atomic structures, it can 

Figure 6.   Computational cost of of PCA-CGCNN methods. Comparison of the computation time for 
calculations of DOS patterns of metallic NPs via DFT (black) and ML (red). For the DFT calculations, a 
2.3 GHz 20 core CPU was used. For the PCA-CGCNN methods, a personal computer with a GTX 2070 GPU 
and i5-9600 K CPU was used, and the computational times were measured as a sum of training and prediction 
times.
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be generally used to explore the correlation between atomic structures and other spectrum-type properties of 
materials (e.g., X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, etc.).

Data availability
The implemented PCA-CGCNN framework code and data are available at https://​github.​com/​kihoon-​bang/​
PCA-​CGCNN, or from the corresponding authors on request.
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