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ABSTRACT: We report a deep learning (DL) model that predicts various material properties
while accepting directly accessible inputs from routine experimental platforms: chemical
compositions and diffraction data, which can be obtained from the X-ray or electron-beam
diffraction and energy-dispersive spectroscopy, respectively. These heterogeneous forms of
inputs are treated simultaneously in our DL model, where the novel chemical composition
vector is proposed by developing element embedding with the normalized composition matrix.
With 1524 binary samples available in the Materials Project database, the model predicts
formation energies and band gaps with mean absolute errors of 0.29 eV/atom and 0.66 eV,
respectively. According to the weighing test between these two inputs, the properties tend to
be more influenced by the chemical composition than the crystal structure. This work
intentionally avoids using inputs that are not directly accessible (e.g., atomic coordinates) in
experimental platforms, and thus is expected to substantially improve the practical use of DL
models.

Data/AI-driven research has emerged as a method
accelerating the discovery of novel materials. In

particular, deep learning (DL) techniques are proven to be
effective characterization tools owing to their superior
capabilities to disentangle complex structure−property rela-
tionships. The largest-scale, openly available material databases
are mainly composed of results obtained from computer
simulations rather than experiments. Examples include the
Materials Project,1 Novel Materials Discovery (NOMAD),2

and Open Quantum Materials Database (OQMD).3 As these
computer-simulation-based databases provide constituent
atom types and their coordinates as basic structural
information, tremendous efforts have been put into developing
DL models with these coordinates as key input descriptors. For
example, Xie and Grossman4 proposed crystal graph convolu-
tional neural networks (CGCNNs), where graphs constructed
from atomic positions are effective in predicting bulk material
properties such as formation energy and band gap energy. Kim
et al.5 and Gu et al.6 used the atomic coordinates of catalysts
and adsorbates to predict their interaction energy during
catalysis. Although these DL models excellently correlate with
various material properties, the required input features (e.g.,
atomic coordinates) are not directly accessible during
experimental studies; thus, an additional analysis or experiment
is required to determine them. Accordingly, the practicality of
these models can be unfortunately lacking from an
experimental standpoint.
In this regard, to improve the practical use of DL models, it

is critical to reformulate the problem using readily accessible

inputs in our routine experimental platforms. For experimen-
talists to identify atomic structural information on a
synthesized sample, two basic characterization methods are
available: X-ray or electron diffraction techniques and energy
dispersive spectroscopy (EDS). The former enables the
determination of crystal symmetries (e.g., space group), and
the latter provides chemical formulas and compositions (e.g.,
AXBYCZ). For this reasoning, DL models in this work utilize
the results obtained from these two basic characterization
methods instead of the exact coordinates of constituent atoms,
with the goal of predicting various material properties
(formation energy, band gap energy, etc.).
Recent studies report the development of machine learning

models accepting either diffraction results or chemical
compositions, and indeed their treatments have quickly
evolved. First, regarding diffraction data, Park et al.,7 Vecsei
et al.,8 Wang et al.,9 and Oviedo et al.10 used one-dimensional
(1D) powder X-ray diffraction (XRD) curves, for which
information such as peak positions, intensities, and full widths
at half-maximum (FWHM) were mainly treated as the key
input values. In addition, Ziletti et al.,11 Aguiar et al.,12 and
Kaufmann et al.13 treated electron-beam-based 2D diffraction
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patterns in a raw image format. Second, for chemical
composition data, Zhou et al.14 created the atom2vec vector
representing the chemical formula of a material using the atom
embedding method. Tshitoyan et al.15 similarly introduced
elemental embedding using the word2vec technique when
processing the Abstract section of a large volume of literature
(over 3.3 million articles). Despite the large contributions
made by these studies, the development of DL models
accepting heterogeneous types of both chemical composition
and diffraction patterns is highly limited today. The only
attempt thus far, to our understanding, is the recent report by
Aguiar et al. where a DL model that concatenates a diffraction
module and a chemistry module is presented.16 However, this
study is still limited to a crystallographic prediction purpose,
and the effectiveness of the combined modules has yet to be
validated for other various material properties.
With the aim of predicting various material properties, we

propose a practical DL model that accepts heterogeneous types
of chemical compositions (texts) and diffraction patterns
(images), both of which are readily accessible on experimental
platforms (EDS measurement or diffraction equipment). We
develop the unique chemical composition vector using a newly
proposed embedding method named element embedding with
the normalized composition matrix (EENCM). We also use
2D diffraction images where the results of three orthogonal
beam axes are superimposed. These two heterogeneous data
are simultaneously treated in the model. With 1528 binary
oxide, sulfide, fluoride, and nitride samples available in the
Materials Project database,1 our model predicts the formation

energies and band gaps with mean absolute errors (MAEs) of
0.29 eV/atom and 0.66 eV, respectively. We note that these
accuracies are not as good as the CGCNN model, which
reports MAEs of as low as 0.04 eV/atom and 0.39 eV for the
same samples.4 However, in contrast to their model, ours
avoids using the exact coordinates of constituent atoms, which
substantially improves the practicality of the method. Addi-
tionally, the weighing tests between two different types of
inputs reveal that the investigated properties tend to be much
more influenced by chemical compositions than by crystal
structures.
Figure 1 shows the schematic structure of the proposed DL

model for predicting material properties. The model accepts
two inputs: chemical composition and diffraction data. The
combination of these two data sets is generally sufficient to
assign a unique material in inorganic crystal databases. Two
independent convolutional neural networks (CNNs)17−20

apply to each input, and the results are connected at the
connection node stage. The inputs of chemical composition
and diffraction images are apparently heterogeneous in terms
of both dimensions and value ranges; hence, they should be
treated carefully when merged. For example, these two inputs
should be appropriately normalized so that the components
can have similar ranges of values (0−0.5) and tested with
different weights for optimized learning results. Although the
output of the model can be any material property, we consider
the formation energy and band gap as our targets in this study,
as they are representative thermodynamic and electronic
properties of a material, respectively. Details on the CNN

Figure 1. Schematic structure of the proposed DL model. The model accepts the inputs of the composition vector and diffraction pattern. Two
independent CNNs apply to each input, and the results are connected at the connection node stage. The output properties of interest are the
formation energy and band gap energy.
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architecture shown in Figure 1 are additionally explained in the
Supporting Information.
To develop the novel composition vector, we first create a

chemical element vector, which represents a chemical element,
through element embedding. For our new element embedding
method, several studies, such as Zhou et al.,14 Tshitoyan et
al.,15 and Herr et al.21 have been referenced. In particular,
Zhou et al.14 generated one-hot encoded data sets consisting of
elements and environments of the material formula and
embedded elements through single-value decomposition and a
probability model. Tshitoyan et al.15 extracted elemental
information through natural language processing of published
papers to generate a one-hot encoded data set and embedded
elements through word2vec.22 We created the data set to clearly
include the chemical composition information on a material
and try to prevent bias that may occur in the case of one-hot
encoded data during the training process for embedding. To
develop the unique composition vector, we propose a novel
chemical element embedding method, namely, the element
embedding with the normalized composition matrix
(EENCM). EENCM is a method to represent each element
as a unique chemical element vector by training a large volume
of chemical formula data (e.g., AXBYCZ). In the EENCM
shown in Figure 2, the chemical formula data in the Materials
Project database1 were used as source data to learn the
properties of chemical bonding between elements. Out of a
total of 120 612 materials, 118 176 (∼98%) are binary (2
elements) to quinary (5 elements) materials, and only 2% are
either unary or composed of more than 5 elements (Figure S1,
Supporting Information). The 98% portion of samples (binary
to quinary materials) are used in the EENCM training process.

In Figure 2b, the composition matrix is described, where the
rows contain the chemical formula of each material (118 176
rows) and the columns contain the elements constituting the
chemical formula (87 columns). With SiO2 as an example to
explain how to fill the matrix elements, 1 and 2 are put into the
Si and O columns, respectively, and all other parts are filled
with a zero. In contrast to previous similar efforts,14,15 the term
frequency-inverse document frequency (tf*idf) technique,23

which is widely used in the text mining field, is implemented
for data normalization in the EENCM method to prevent
biased training for specific elements and materials. Details
about implementing the tf*idf technique are available in the
Supporting Information.
The composition matrix after the normalization process is

used in the AutoEncoder24,25 is shown in Figure 2c. This
AutoEncoder trains the characteristics of the elements that
make up the formula of the material. Then, the 30 trained
weight parameters of the encoder part were defined as each
chemical element vector, as shown in Figure 2d. The
dimension (nodes of the hidden layer in EENCM) was set
to 30 after extensive testing of different numbers ranging from
3 to 40 (Figure S2, Supporting Information). Once each
chemical element vector was ready based on the above, the
composition vector for the material AmBn can be defined as
follows:

m
m n

A
n

m n
BComposition vector ,

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ

=
+

× ⃗
+

× ⃗
(1)

where A⃗ and B⃗ represent the chemical element vectors of
elements A and B. As the element vectors have dimensions of 1
× 30, the composition vectors for binary and ternary materials
have dimensions of 1 × 60 and 1 × 90, respectively. To

Figure 2. Architecture of the EENCM for the creation of chemical element vectors. The EENCM creates a unique chemical element vector by
applying the chemical formula of a material to the AutoEncoder. The chemical formula (a) is transformed into a composition matrix (b) to train
the chemical composition information on the material. The composition matrix (b) is normalized by the term frequency-inverse document
frequency (tf*idf) technique for training the AutoEncoder (c). The trained network weights of the AutoEncoder (c) include information on the
learning characteristics of the elements constituting the material. The EENCM uses the weights of the AutoEncoder (c) as the chemical element
vector (d).
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determine whether our composition vector performs better
than previous approaches in property prediction, we carried
out the following tests. For 1492 materials in an elpasolite
structure,26 we developed a deep learning method using the
standard CNN model to predict the formation energy.
Regarding the formation energy data, our deep learning
model employing EENCM achieves a mean absolute error
(MAE) of 0.054 ± 0.019 eV/atom (Figure S3, Supporting
Information), which is lower than the comparison models
(0.15 eV/atom of Zhou et al.14) and comparable to the 0.056
eV/atom of Tshitoyan et al.15

Along with the aforementioned composition vector, a
diffraction pattern is the other equally important input in our
DL model. The diffraction pattern has been mainly studied to
analyze information on the structure of a crystalline material;
thus, it is used for training along with the composition vector
as crystal structure information. We used the simulator

introduced in the literature to overcome the difficulty of
generating an actual diffraction pattern image data set; thus,
Condor software27 was used to simulate the diffraction pattern
images. We preprocessed the diffraction pattern images by
benchmarking the related study of Ziletti et al.11 Figure 3 helps
explain image preprocessing. To recognize the three
orthogonal zone axes of x, y, and z, grayscale images were
converted to red (R), green (G), and blue (B), taking into
account the degree of brightness. Then, using a merging
method, the diffraction patterns in the three directions were
converted into a single image (128 × 128 dimensions). The
Condor settings are described in the Supporting Information.
To test our DL model for the prediction of material

properties from the composition vectors and the diffraction
pattern images, we considered the formation energies and band
gaps of inorganic semiconducting materials as the representa-
tive thermodynamic and electronic properties of materials,

Figure 3. Preprocessing diffraction patterns. Diffraction pattern images containing structural information are generated by Condor software.26

Incident beams are injected in three directions for each material to generate diffraction patterns in three directions as images of the x-, y-, and z-
axes. We apply red, green, and blue colors to recognize the directionality and re-express three images into one image. This sample is a cubic
structure of SnO2 (Materials Project ID is mp-697).

Figure 4. Performance of our DL models. This figure shows the performance for predicting the formation energies (green) and band gaps (blue) of
materials with the ratio of the composition vector and diffraction pattern on the connection node stage in our DL architecture.
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respectively. Here, 1524 binary systems such as metal oxides
(839), sulfides (328), fluorides (192), and nitrides (165) were
considered, whereas materials with zero band gaps were
ignored (Figure S4, Supporting Information). In evaluating the
proposed DL model, the data were divided into a training
set:test set = 90:10, and the model was verified using k-fold
cross-validation (k = 10). The prediction performance of the
proposed DL model is shown in Figure 4, in which the MAEs
for the formation energy and band gap are presented with the
ratio of the composition vector and diffraction pattern on the
connection node stage of our DL architecture. The relevant
details are explained in the Supporting Information. Through
this approach, we investigated the relative contributions of the
crystal structures (diffraction patterns) and compositions
(composition vectors) of materials to their properties.
In Figure 4, the DL model considering only the diffraction

pattern images shows high MAE values (1.30 eV for band gaps
and 0.78 eV/atom for formation energies). On the other hand,
the DL model considering only the composition vectors
significantly lowers the MAE values (0.77 eV for band gaps and
0.39 eV/atom for formation energies), implying that material
properties are likely more affected by the chemical
composition than by the crystal structure. However, if two
materials have identical chemical compositions but different
crystal structures, the DL model considering only the
composition vectors provides the same property values for
the two materials because it does not reflect the crystal
structure information. Because of this, we observe horizontally
or vertically distributed data in the scatterplots showing
comparisons of the predicted and actual values in Figure S5,
Supporting Information. From these results, it is obvious that
the DL model considering only the composition vectors or the
diffraction patterns is limited in its prediction of material
properties. Accordingly, we consider the contributions of the
two input features (composition vector and diffraction pattern)
in the DL model and investigate the performance of the DL
model as a function of the ratio between the input features
(composition vector:diffraction pattern = 10:90, 30:70, 50:50,
70:30, and 90:10). Irrespective of the ratio, the DL models
considering the two features show superior performance over

those considering only one feature. The best performance is
observed with the composition vector:diffraction pattern ratio
as 90:10, which shows MAE values of 0.66 eV for the band
gaps and 0.29 eV/atom for the formation energies; these values
are an improvement of 49.23% for the band gap and 62.82%
for the formation energies in comparison to the DL model
considering only the diffraction patterns. This result also
reveals that the material properties are determined by both the
crystal structures and compositions; however, it is more
influenced by the composition than by the crystal structure.
We also investigated the prediction accuracy over seven

types of Bravais lattice systems (triclinic, monoclinic, ortho-
rhombic, tetragonal, trigonal, hexagonal, and cubic) to under-
stand any specific gains and losses in each crystal family. Table
S2 in the Supporting Information shows the results of the
extended analyses over seven crystal families. One of the most
prominent observations is that the prediction accuracy (MAE)
is the worst for the cubic systems. This is true for both
formation energy (0.06 eV/atom larger for the cubic than for
the overall) and band gap energy (0.18 eV larger for the cubic
than for the overall). This is likely attributed to the highest
crystal symmetry of the cubic systems, which will cause more
visual resemblance of diffraction patterns. It may be difficult for
the model to learn the structural subtle differences between
materials within the cubic systems. As a result, the DL model
performance is found the worst for the cubic system whereas it
is relatively better for the lower symmetry systems such as
triclinic, trigonal, and hexagonal systems.
In addition, we also investigated whether or not the

contributions of chemistry factors (i.e., composition vector)
substantially differ by crystal families. Supporting Information
Table S2 shows the results by the ratio of the composition
vector and diffraction pattern vector (CV:DP). We find that
the optimal CV:DP ratio is largely unaffected by the types of
crystal families and found around 90:10, although for only a
few cases either 70:30 or 100:0 slightly outperforms. With
these decomposition studies, we confirm once again that the
material properties are much more determined by the chemical
compositions rather than crystal structural information.

Table 1. Formation Energies (eV/atom) (a) and Band Gap Energies (eV) (b) of Various Materialsa

(a) Formation Energy [eV/atom]

triclinic monoclinic orthorhombic tetragonal trigonal hexagonal cubic SD

TiO2(34) −3.48(1) −3.38(6) −3.40(15) −3.48(3) −3.39(4) −3.31(2) −3.28(3) 0.08
ZrO2(18) - −3.79(3) −3.79(10) −3.80(4) - - −3.77(1) 0.01
Al2O3(20) −3.31(5) −3.39(7) −3.34(4) - −3.32(3) - −3.42(1) 0.05
RbS(4) - −0.23(1) −1.14(2) - - −1.22(1) - 0.55
ScF3(7) - −3.71(2) −3.81(2) - −4.32(2) - −4.32(1) 0.33
NaN3(5) - 0.29(3) - - −0.38(2) - - 0.48
SD 0.12 1.87 1.12 0.22 1.71 1.47 0.46 0.25/1.00

(b) Band Gap [eV]

triclinic monoclinic orthorhombic tetragonal trigonal hexagonal cubic SD

TiO2(34) 3.31(1) 2.14(6) 2.47(15) 2.13(3) 2.57(4) 1.60(2) 1.41(3) 0.63
ZrO2(18) - 3.85(3) 3.51(10) 3.59(4) - - 3.13(1) 0.29
Al2O3(20) 3.61(5) 4.37(7) 4.66(4) - 4.77(3) - 5.22(1) 0.59
RbS(4) - 0.35(1) 1.21(2) - - 1.59(1) - 0.64
ScF3(7) - 3.52(2) 3.77(2) - 6.08(2) - 6.08(1) 1.41
NaN3(5) - 1.88(3) - - 4.09(2) - - 1.56
SD 0.21 1.50 1.32 1.03 1.46 0.01 2.10 0.86/1.09

aHere, the property values indicate the averaged values of the materials classified by the chemical compositions and crystal structures. The standard
deviations (SDs) of the averaged values are also included. The values in parentheses indicate the material numbers.
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Unfortunately, the performance of our DL model is not as
good as that of the previous CGCNN model (0.39 eV for the
band gaps and 0.04 eV/atom for the formation energies).4

However, unlike the CGCNN model, our DL model does not
require the exact coordinates of the constituent atoms that are
not directly accessible experimentally. Rather, the DL model
requires two inputs, composition information and diffraction
pattern images, that are all directly accessible experimentally.
The data set used in this study is from the Materials Project
library,1 indicating that the band gaps and formation energies
are DFT values. Compared with experiments, DFT calcu-
lations themselves have MAEs of 0.6 eV for the band gaps and
0.08−0.14 eV/atom for the formation energies.4,28 In this
regard, although our DL model provides only slightly higher
MAEs for the prediction of material properties than those of
DFT calculations, our model is enough useful.
As already mentioned, it is found that the material properties

(band gaps and formation energies) are more influenced by the
chemical compositions of materials than by the crystal
structures. To further support this, we additionally performed
statistical analyses for the band gaps and formation energies
with several chemical formulas (TiO2, ZrO2, Al2O3, RbS, ScF3,
and NaN3), in which the materials were considered as
representative oxides, sulfides, fluorides, and nitrides. In
Table 1, the formation energies and band gaps of each
material are averaged for 7 crystal structures (triclinic,
monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and
cubic structures), and the standard deviation (SD) values of the
averaged properties are included. For example, there are 34
TiO2 crystals in the Material Project library,1 and the 34 TiO2
crystals are classified into 1 triclinic, 6 monoclinic, 15
orthorhombic, 3 tetragonal, 4 trigonal, 2 hexagonal, and 3
cubic structures. Here, the formation energies for each crystal
structure are averaged. The formation energies for TiO2
crystals are −3.48 eV/atom for triclinic, −3.38 eV/atom for
monoclinic, −3.40 eV/atom for orthorhombic, −3.48 eV/atom
for tetragonal, −3.39 eV/atom for trigonal, −3.31 eV/atom for
hexagonal, and −3.28 eV/atom for cubic. As a result, the SD
for the averaged formation energies of TiO2 is 0.08. Similarly,
the SD values for ZrO2, Al2O3, RbS, ScF3, and NaN3 are
calculated as 0.01, 0.05, 0.55, 0.33, and 0.48, respectively (see
the last column in Table 1a). These values represent the degree
of variation in material property variations when the crystal
structures are modified and the chemical formulas are fixed. In
contrast, to understand the opposite case where the crystal
structures are fixed and the chemical formulas are modified, we
also calculated the SDs of the averaged formation energies of
TiO2, ZrO2, Al2O3, RbS, ScF3, and NaN3 crystals for a given
crystal structure. The results reveal that SDs are generally
much larger: 0.12 for triclinic, 1.87 for monoclinic, 1.12 for
orthorhombic, 0.22 for tetragonal, 1.71 for trigonal, 1.47 for
hexagonal, and 0.46 for cubic (see the last row in Table 1a).
Comparing the SDs in the last row and column in Table 1a
clearly shows that the formation energy variations are induced
much more by the chemical compositions of the materials than
by their crystal structures. In Table 1b, we also find similar
behavior for the band gap property; thus, detailed explanations
are omitted.
To further support the argument that the variations in

material properties are mainly due to the chemical composition
rather than crystal structure, we provide a concrete example
comparing TiO2 and ZrO2. TiO2 and ZrO2 are chosen because
they are oxides and have the same stoichiometry (metal:-

oxygen = 1:2). In the Materials Project library,1 they have the
four same crystal structures (space group numbers of 14, 61,
136, and 141), and their formation energies and band gaps are
summarized in Tables S3 and S4, Supporting Information.
Regarding TiO2, the space group numbers of 14, 61, 136, and
141 have formation energies of −3.46, −3.50, −3.47, and
−3.52 eV/atom, respectively, leading to an SD of 0.03 for the
formation energies. Regarding ZrO2, the space group numbers
of 14, 61, 136, and 141 have formation energies of −3.84,
−3.83, −3.79, and −3.82 eV/atom, respectively, leading to an
SD of 0.02. However, for the same space group, the formation
energies of TiO2 and ZrO2 show much larger SD values (0.27
for space group no. 14, 0.23 for no. 61, 0.23 for no. 136, and
0.21 for no. 141). Likewise, for the band gaps, similar
behaviors are observed. These results clearly reveal that the
formation energies and band gaps are more influenced by the
chemical composition than by the crystal structure.
Lastly, we would like to discuss the effect of the possible

uncertainty in the input feature preparations. The uncertainty
may exist in the input preparation stage, and their effects on
the prediction reliability are worth being addressed. For our
DL model, two input features (composition vector and
diffraction pattern vector) exist, and the composition vector
turned out to be much more influential; thus, we focus on the
composition vector solely in the analysis. The measurements of
the composition cannot be errorless. For an arbitrary example
of CeO2, multiple measurement methods could lead to
different results (e.g., method1 = Ce:31.67, O:70.00; method2
= Ce:35.00, O:63.33; method3 = Ce:36.67, O:60.00).
Supporting Information Figure S6 shows the results of the

relationship between the composition measurement error (%)
in the metal elements and the increase in the resultant errors (ε
= ΔMAE/MAE0, %) of the output properties (both formation
energy and band gap energy). Here, MAE0 denotes the MAE at
zero compositional error, and ΔMAE denotes the increase in
MAE upon the change in the composition values. It is not
surprising to see that ΔMAE monotonically increases with the
increasing errors in composition measurements (regardless of
the direction). As a guideline, we identified the threshold value
in the compositional error that is expected to cause less than
3% in ε. For the formation energy, when the composition
measurement error is within 5% (−5 ∼ +5%), ΔMAE is very
small, less than only 2%. For the band gap energy, on the other
hand, when the composition measurement error is within 10%
(−10 ∼ +10%), ε is less than only 3%. The DL model is
relatively robust with the larger errors in the composition
measurements for the bandgap energy than the formation
energy. This difference in the sensitivity is likely attributed to
the fact that the absolute values of the formation energies are
smaller (mostly between −2 to +2 eV/atom) than those of the
band gap energies (mostly between 0 to +10 eV); hence, the ε
is computed larger.
In conclusion, we developed a CNN-based DL model for the

direct prediction of material properties (formation energy and
band gap) from experimentally accessible input features
(chemical compositions and diffraction patterns) to improve
the practical use of DL models. Although the two inputs are
heterogeneous in terms of the types (texts and images) and
vector sizes, our DL model readily treats the heterogeneous
features simultaneously, in which the novel chemical
composition vector is proposed by developing a method
named element embedding with the normalized composition
matrix. Here, we intentionally avoid using inputs that are not
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directly accessible (e.g., exact coordinates of constituent
atoms) in our experimental platform, which is expected to
substantially improve the practical use of DL models in
material property predictions. As a result of weighting tests
between two feature types (chemical compositions and crystal
structures) in the DL model, we find that the material
properties are more dominantly determined by the chemical
composition than by the crystal structure, which provides an
important guideline for future studies of the inverse design of
materials. That being said, it would be a more efficient strategy
to first determine the chemical compositions of materials and
subsequently predict their crystal structures for a given
composition in performing the inverse design of materials.
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