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1.  Introduction

Water is likely to crystallize below 0 ◦C to create ordered 
structures, which can be of at least 17 different types [1]. In 
contrast to the polymorphism, solid water can also exist in 
several distinct metastable disordered states, depending on 
temperature and pressure. Found in most abundance in the 
interstellar media [2, 3], amorphous ices (or glassy water) 
were first discovered in an experiment in 1935 [4]. Since then, 
several experimental routes have been introduced to obtain 
amorphous ices below the glass transition temperature (120–
160 K), such as depositing water vapor on a cold substrate, 

quenching liquid water or compressing the hexagonal ice all 
at a sufficiently rapid rate [1, 4–7]. Among different types 
of glassy water, two of the most interesting are low-density 
amorphous (LDA) and high-density amorphous (HDA) ices 
[8–10].

In the long history of our tremendous interest in water, many 
attempts have been made to study the structure of water and 
relate it to various properties of water [6, 7, 11–20]. However, 
it is well-known that in every phase of water the local tetra-
hedral network (inset figure in figure 1(a)) framed by oxygen 
atoms and hydrogen bonds (H-bonds) plays an important role 
in constituting the basic building block of water structure and 
is regarded to be responsible for water’s anomalous behaviors. 
For instance, the density maximum anomaly of liquid water 
can be explained by quantifying the degree of tetrahedrality 
[15], and the wide supercooling region of water can be ascribed 
to pentagonal rings made of oxygen atoms [16]. The structure 
of amorphous ices has also been understood in the context of 
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Despite the amorphous nature of glassy water, x-ray or neutron scattering experiments reveal 
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supports that PH is an effective tool to identify hidden MRO in amorphous configurations.
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tetrahedrality. The LDA phase is regarded to maintain locally 
favored tetrahedral structures, similar to liquid water [17]. The 
HDA phase, on the other hand, has been understood to be a 
collapsed and poorly crystalline phase due to the penetration 
of another water molecule in the second coordination shell 
toward the inner first shell under pressure [21].

As such, most previous structural analyses of water have 
been limited to the short-range order (SRO) only. In amor-
phous water systems, SRO mostly refers to the size compa-
rable to that of the local tetrahedral network frame, which 
is less than 3.0 Å  while medium-range order (MRO) corre-
sponds to the size range beyond that. In contrast to the SRO, 
our understanding of MRO in amorphous water systems still 
remains poor today. It has long been observed in x-ray or neu-
tron diffraction experiments of water that the peak intensity in 
the structure factor increases as the temperature gets lowered, 
which directly implies an increase of MRO along the glass 
transition [14, 22]. In particular, for a glassy state of water 
below 120 K, the first sharp diffraction peak (FSDP) in the 
structure factor supports the existence of strong MRO features 
embedded in the amorphous system. To the best of our knowl-
edge, however, the structural real space origin of those sharp 
peaks in the structure factor has not been clarified yet.

In this article, we combine two computational methods, 
molecular dynamics (MD) simulations and persistent 
homology (PH) in topological data analysis, to identify 
hidden MRO features in glassy water systems. The detected 
MRO structures are rings determined by the PH computing 
mechanism and are distinguished by their geometry, such as 
their size, shape and the number of components: MRO rings 
in LDA ice have larger size and flatter shapes, while involving 
less number of member atoms, than those in HDA ice. The 
ensemble of these MRO rings extracted from PH computa-
tions successfully reproduces the FSDP (both peak position 
and width) in the x-ray structure factor, demonstrating the ring 
structures as the real space origin of experimentally observed 
FSDPs. This result highlights that PH is a convincing tool 
to reveal a submerged order beyond the short local range in 
amorphous systems.

2.  Methods

2.1.  Molecular dynamics simulations

For MD simulations we used the TIP4P/2005 model [23] in 
the LAMMPS software [24]. We first prepared a liquid water 
structure as an isothermal-isobaric NPT ensemble of 2880 
water molecules in a cubic box with periodic boundary condi-
tions at T = 280 K  and P = 0.1 MPa. The isobaric cooling 
cycle on the liquid water to obtain hyperquenched glassy 
water, i.e. LDA ice, ran for 200 ns at a cooling rate of 1 K ns−1. 
Then it is followed by the isothermal compression of LDA ice 
to get HDA ice at 1.3 GPa, running for 18 ns with a compres-
sion rate of 0.1 GPa ns−1. The time step for the integration 
algorithm was set to be 1 fs and the damping parameters for 
the thermostat and barostat are 0.5 and 5 ps, respectively. We 

cut off the Coulombic and Lennard-Jones interactions at dis-
tance 10 Å  and 10.3092 Å , respectively [18].

2.2.  Structure factor

The structure factor S(Q) measures the scattered intensity of 
an incident radiation for the scattering vector Q and is related 
to the radial distribution function (or pair correlation function) 
via the Fourier transform. For a perfect crystal, it exhibits 
infinitely many sharp peaks reflecting the periodicity of the 
system; for a liquid-like arrangement, a certain degree of fluc-
tuations appears in the distribution function, yet the sharpness 
is weak. The numerical estimation of the structure factor of a 
multiatomic system of N atoms αj (1 � j � N) at positions xj 
is as follows [25]:

S(Q) =
1
N

∣∣∣∣∣∣
N∑

j=1

fj(Q) e−iQxj

∣∣∣∣∣∣

2

,� (1)

where Q = |Q| = 2π
λ  is the wave number for the wavelength λ 

of the plane wave and

fj(Q) =

4∑
k=1

aj,k e−bj,k( Q
4π )

2

+ cj� (2)

is the (approximated) atomic form (or scattering) factor of 
each atom αj with constants aj, bj and cj  reflecting the electron 

Figure 1.  Amorphous ices generated by MD simulations. (a) 
Preparation routes for glassy water data on a T-P map. The inset 
figure depicts the local tetrahedral unit of water molecules based on 
H-bonds (gray dotted lines between O⋯H). (b) Change in density ρ  
along the transitions in the MD simulations, divided into two steps.
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density of atom αj under the assumption that the electron den-
sity is spherically symmetric [26].

2.3. Topological analysis via persistent homology

For structural analysis, we used persistent homology (PH) 
computations from an emerging research field, topological 
data analysis [27, 28]. PH has been actively utilized in a wide 
range of domains, including materials science and neurosci-
ence [29–34], as an effective detector of topological features, 
i.e. holes embedded in a system. For each dimension n, we 
define the nth persistent homology group PHn, which extracts 
qualitative features of n-dimensional holes, e.g. connected 
components for n  =  0, rings for n  =  1 and cavities for n  =  2, 
that persist over multiple scales. Since we aim to detect MRO 
ring structures in water that are responsible for the FSDP in 
the structure factor, our focus is on the case n  =  1.

As one of the most efficient representations of PH com-
putations, a persistence diagram (PD) is used to visualize 
the distributions of size and shape of hole structures. PD can 
precisely reveal hierarchical structural units in various length 
scales from short- to long-range order in the system. In this 
sense, PD has great merit compared to other conventional 
methods for structural analyses, such as radial distribution 
functions (RDF), distributions of bond or dihedral angles and 
ring statistics [35]. The detailed PH computing mechanism for 
our study using HomCloud software [36, 37] follows in sec-
tion 3.2 along with a schematic illustration.

3.  Results

3.1.  Data preparation and structure factor

We performed out-of-equilibrium MD simulations on the 
system of 2880 water molecules to obtain LDA and HDA 
ices, separated by two steps (figure 1(a)) as described in sec-
tion 2.1. Figure 1(b) shows the change in density at each step, 
which is in good agreement with the experimental densities 
ρLDA ≈ 0.95 g cm−3 and ρHDA ≈ 1.31 g cm−3 at T = 77 K  
and P = 1 GPa [5]. Note that we took LDA and HDA ice 
structures at P  =  0.1 and 1300 MPa, respectively, of which 
densities agree the best with the experimental results.

Next, the structure factor S(Q) of each glassy water system 
is computed and compared with experimental results [22] to 
confirm the reliability of our MD-generated amorphous ice 
systems. (See section 2.2 for the computational details.) For an 
amorphous configuration, the FSDP at small Q �= 0 in S(Q), if 
it exists, is closely related to MRO within the system [14, 38]. 
Figure 2 compares the experimental structure factor (top) with 
the computed S(Q) (bottom) of our water structures generated 
by MD simulations. The FSDP position Q* in each case is 
well-matched to the experimental result at Q∗

LDA ≈ 1.75 and 
Q∗

HDA ≈ 2.25 within the error bound of ∼ 0.05 Å−1. Note that 
the position of the peak varies slightly from the experimental 
result due to the difference in external conditions of temper
ature and pressure in our simulation setup.

3.2.  Persistent homology computations

The PH computing mechanism is as follows. Suppose we 
have an atomic configuration of N atoms αj centered at 
xj ∈ R3 (1 � j � N) and a set {rj ∈ R : 1 � j � N} of input 

radii. To compute PH1, we place a spherical ball of radius rj  

centered at xj, and enlarge the ball radius to 
√

r2
j + ε with 

increasing ε, the scale parameter in the computation. When 
two balls meet, we add a line segment to connect the corre
sponding two atoms. As ε increases, more line segments 
appear and eventually create a ring by connecting multiple 
atoms end to end. When a ring R is born, ε is recorded as the 
birth scale bR of the ring. In contrast, we define the death of 
ring R when R is completely triangulated and every three 
balls has nonempty intersection. The ε at the death point is 
recorded as the death scale dR of the ring. The very last trian-
gulated ring is called the death simplex, and its maximum side 
length represents the size of the ring. [31, 39]

Figure 3(a) shows a schematic illustration for the PH 
computing process with the resulting PD of a 2D ver-
sion of a water configuration. In our study, we use the fol-
lowing input radii of atoms: taking the first peak positions  
rOH = 0.95 Å  and rHH = 1.55 Å  of the RDF of OH and HH 
pairs into consideration (figure S1 in supplementary data 
(stacks.iop.org/JPhysCM/31/455403/mmedia)), we solve the 
equations rHH = 2 rH and rOH = rO + rH to take rH = 0.775 ̊A  
and rO = 0.175 ̊A  as the input radii of H and O atoms, respec-
tively. As ε increases, growing balls intersect, thereby line seg-
ments connect atoms, so that multiple rings Rj ( j = 1, · · · , 8) 
are created. Note that red triangles Rj ( j �= 4) are small 
enough to disappear shortly after their birth, while the blue 
ring R4 persists longest. In the PD, the longer a ring persists, 

Figure 2.  Structure factor. X-ray diffraction experiment results 
[22] (top) and computed S(Q) for the MD-generated data (bottom). 
The FSDPs of LDA and HDA ices are at Q∗

LDA ≈ 1.75 and 
Q∗

HDA ≈ 2.25, respectively.
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the farther away it is placed from the diagonal. The largest 
ring R4 has Rj  for j = 5, 6, 7 as its subrings and the unfilled 
blue triangle at ε = ε5 is the death simplex of R4.

Next, the PD1 for our MD-generated amorphous ices are 
aligned in figure 3(b). Note that the birth–death pairs of rings 
in PDs are plotted in a squared scale of Å2. PDs of both 
LDA and HDA ices show a division of points into distinct 
areas, characterized by lines or band-like regions, where a 
large number of points (each representing a ring) are con-
centrated. We denote the separated characteristic regions by 
Lj  and Hj ( j = 1, 2, 3, 4) for LDA and HDA, respectively, 
as depicted in the figure. Note that rings in vertical island 
regions L1 and H1 are composed of more than four member 
atoms (m � 4) and their triangular or quadrilateral subrings 
are recorded in other regions close to the diagonal. Since 
rings in L4 and H4 are small triangles whose length scales 
contribute little to the FSDP in the structure factor, our focus 
is rather on rings in other characteristic regions ( j = 1, 2, 3) 
that would suitably correspond to the MRO in glassy water 
and are likely to be associated to the sharp peaks in S(Q) in 
figure 2.

3.3.  Characterizing MRO in LDA and HDA ices

The geometry of MRO ring structures of LDA and HDA 
ices substantially differs from each other in several aspects. 
First, stacked bar charts in figure 4(a) compare the distribu-
tions of the number of ring members (m � 30) in the vertical 
island regions L1 and H1 in PDs. We denote a ring with m 

members by m-ring. While L1 has a sharp distribution of the 
number of members, mostly concentrated on 7–10 members, 
H1 has a broader distribution, as many rings of H1 involve 
a larger number of atoms as their components. The median 
number of ring members is 9 and 12 in L1 and H1, respec-
tively. As mentioned earlier, rings in other characteristic 
regions for j �= 1 (close to the diagonal) are simple triangles 
or 4-rings. We observe in figure 4(a) that HH atom pairs, as 
opposed to OH or OO (none) pairs, dominantly determine 
death scales of MRO rings both in LDA and HDA ices. The 
inset figures  show six types of representative m-rings in L1  
( 1©– 3©) and in H1 ( 4©– 6©) extracted from the marked spots in 
the PDs in figure 3(b) with red lines connecting the atom pairs 
responsible for the death of each ring.

In addition to the number of ring members, MRO rings in 
LDA and HDA ices are differentiated by their size and shape. 
For this purpose, we consider the following length of ring R:

δ(R) =

√
r2
α + dR +

√
r2
α′ + dR,� (3)

which is the distance between the centers of atoms α and α′, 
the pair of which determines the death scale dR of ring R 
(i.e. depicted as red lines in figure 3(a)) [39]. Note that δ(R) 
represents the size of R, as δ(R) is the maximum edge length 
within the triangulated ring, and is invariant under the choice 
of input radii, since it is determined by the given configuration 
itself. We plot red line graphs in figure 4(b) to show the mean 
value of δ(R) of m-rings in L1 and H1 regions with respect 
to the number of ring members m, tending to increase as m 
becomes larger. The average sizes 〈δ〉 of the rings in L1 and 

Figure 3.  Persistence diagrams PD1. (a) A schematic illustration of the construction of rings (left) over a 2D configuration with two 
different types of input radii and its resulting PD1 (right). (b) PD1 of LDA (left) and HDA (right). The colorbar represents the multiplicity of 
rings on a logarithmic scale. Both PDs have separated characteristic regions, denoted by Lj  and Hj  ( j = 1, 2, 3, 4).
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H1 contributory to the FSDPs are estimated to be notably dif-
ferent as 3.58 ± 0.23 Å  and 2.99 ± 0.09 Å , respectively.

It might be counterintuitive that rings with more mem-
bers in H1 are smaller than rings in L1 with fewer members. 
This is also confirmed in PDs where the death scale (i.e. the 
size of the ring) exhibits a range of smaller length scales in 
HDA than in LDA ice. However, as water molecules become 
closer to each other in HDA, mainly by the pressure effect, 
the movement naturally leads to smaller voids in twisted ring 
bodies with more members, which is consistent with higher 
density of HDA. We define the following formula to study the 
degree of flatness (or planarity) of a detected MRO ring R of 
m members:

F(R) =
1
m

m∑
j=1

dist(xj, P),� (4)

where xj is the position of atom αj and P is the best fit plane 
to the ring geometry that minimizes the sum of the dis-
tances of member atoms from the plane. Note that F � 0 
with F  =  0 indicating that all the ring members are coplanar, 
hence a flat ring. MRO rings in L1 display flatter shapes with 
〈F〉 = 0.42 ± 0.12 and Fmax = 0.52, while those in H1 have 
〈F〉 = 0.56 ± 0.19 and Fmax = 0.87. The mean flatness 
〈F〉 of rings in L1 (left) and H1 (right) are shown with blue 
dotted lines in figure 4(b). Two 9-rings, each found in L1 and 
H1 regions, are shown in figure 4(c). This geometry is com-
patible to the picture where water molecules in the second 

coordination shell in the basic tetrahedral network penetrate 
into the first shell by the increased pressure, resulting in the 
deformed tetrahedral network in HDA ice.

3.4.  Reproducing FSDPs by PD1 results

To reproduce the FSDP in S(Q) from PD1 results, we use the 
following equation [31]:

S∗(Q) =
1
|Π|

∑
(bR,dR)∈Π

exp


−

(
Q − 2π

δ(R)

)2

2σ2


,� (5)

where Π is a characteristic region Lj  or Hj ( j = 1, 2, 3) on 
PDs with |Π| the number of rings in the region, (bR, dR) is 
the birth–death pair of ring R in a squared scale of Å2 and 
σ = 0.05 applies a smoothing effect on the curve. Figure  5 
shows the reproduced FSDPs of LDA (top) and HDA (bottom) 
by S*(Q). We first consider each individual characteristic 
region Πj ( j = 1, 2, 3) on PD to plot the corresponding S*(Q) 
and then their combination Π1 ∪Π2 ∪Π3 for each LDA and 
HDA ice. Note that rings in L1 and L2 regions contribute much 
to reproducing the peak at Q∗

LDA apart from the rings in L3 
region, which are of smaller scale than those in other regions. 
This signifies that MRO rings in L1 and L2 are the main con-
tributors to the FSDP in S(Q). Also in the case of HDA, the 
reproduced peak from the combined characteristic region 
H1 ∪ H2 ∪ H3 matches fairly well with the designated spot.

Figure 4.  Ring analysis in L1 and H1. (a) Stacked bar charts show the distribution of the number of m-rings in L1 (left) and H1 (right) 
regions. The orange and blue bars count HH and OH atom pairs, respectively, that determine the death scale (hence the size) of rings. The 
inset figures are representative ring structures, corresponding to the blue spots 1©– 3© in L1 and 4©– 6© in H1 in figure 3(b), with white H and 
red O atoms. (b) Red and blue line graphs display the change of the mean ring size 〈δ〉 and the mean degree of flatness 〈F〉, respectively, for 
L1 (left) and H1 (right). Error bar is defined as the standard error of the mean. Dotted lines represent the average values of 〈δ〉 and 〈F〉 of all 
rings. (c) Two 9-rings, each extracted from L1 (left) and H1 (right). The red triangle depicts the death simplex of each ring, and red dotted 
line connects the atom pair that terminates the triangulation of the ring.
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In addition to the peak position, the width of the FSDP 
is also examined. We calculate the ratio Ω = wQ∗

HDA
/wQ∗

LDA
, 

where wQ∗
LDA

 and wQ∗
HDA

 are the full widths at half maximum 
of the FSDPs of the amorphous ices. The ratio ΩS∗(Q) of the 
reproduced peaks is estimated to be 1.63, which excellently 
agrees with Ωx−ray ≈ 1.59 of the experimental data (top panel 
in figure 2) and ΩMD ≈ 1.60 of our MD-generated ice con-
figurations (bottom panel in figure 2). All these values consist-
ently reflect that the FSDP width of HDA ice is larger than that 
of LDA ice. Overall, PH-extracted MRO rings successfully 
reproduce the quantities associated with the FSDPs, including 
the peak positions and widths, in the structure factor, which 
convincingly supports that these rings construct the hidden 
MRO in glassy water, leading to the appearance of the sharp 
peaks.

In a multiatomic system as water, the larger the electron 
density of an atom has, the more effect it adds to the diffrac-
tion pattern. This fact has been one of the reasons for higher 
attention to the oxygen arrangement only in the previous 
studies of water structures [17, 40]. As a comparison, we fur-
ther carried out the FSDP reconstruction process based on the 
oxygen arrangement only (O-system hereafter) and compared 
the results to the case of the entire H2O system (figure S2 in 
supplementary data). While the trend of the FSDP of HDA 
appearing at larger Q than that of LDA is preserved, O-system 
does not accurately reproduce the quantities associated with 
the FSDP (e.g. peak position and width). For the O-systems 
in the bottom panel in figure S2, the peak positions deviate by 
approximately 0.4–0.6 Å−1, and also the notably larger peak 
width of HDA than that of LDA is not reproduced. Thus, it is 
critical to keep both oxygen and hydrogen atoms into consid-
eration for an accurate PH analysis of water in ensemble. This 
is a hitherto unknown result, which would have been difficult 

to obtain in earlier approaches, as previously known struc-
tural information was mostly based on oxygen atoms in water, 
overlooking hydrogen atoms as a mere decoration.

4.  Conclusion

In conclusion, our combined approach using MD and PH has 
successfully embodied the real space origin of the FSDP in the 
structure factor of both types of amorphous ices by detecting 
MRO ring structures in each. We identified the MRO struc-
tures via separated regions in PDs and compared those in each 
type of the amorphous ice systems in terms of their shape and 
size as well as the number of ring constituents. The average 
ring size 〈δ〉 and the average degree of flatness 〈F〉 of the rings 
can be summarized as 〈δ〉LDA = 3.58 Å > 2.99 Å = 〈δ〉HDA 
and 〈F〉LDA = 0.42 < 0.56 = 〈F〉HDA. The PH-extracted 
MRO rings well explain the quantitative features (peak posi-
tion and width) of the FSDPs in the structure factor, hence 
suitably serve as a hidden order in real space. Further applica-
tions of PH will shed light on our fundamental understanding 
of various types of amorphous systems with interesting MRO 
features that are yet hidden in a complicated geometry.
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